Maria J DÃ-ez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076166/publications.pdf

Version: 2024-02-01

471509 477307 2,151 30 17 29 citations h-index g-index papers 32 32 32 2519 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	European traditional tomatoes galore: a result of farmers' selection of a few diversity-rich loci. Journal of Experimental Botany, 2022, 73, 3431-3445.	4.8	11
2	Resistant Sources and Genetic Control of Resistance to ToLCNDV in Cucumber. Microorganisms, 2021, 9, 913.	3.6	16
3	Global range expansion history of pepper (<i>Capsicum</i> spp.) revealed by over 10,000 genebank accessions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	48
4	Fine tuning European geographic quality labels, an opportunity for horticulture diversification: A tentative proposal for the Spanish case. Food Control, 2021, 129, 108196.	5. 5	2
5	Morphoagronomic characterization and whole-genome resequencing of eight highly diverse wild and weedy S. pimpinellifolium and S. lycopersicum var. cerasiforme accessions used for the first interspecific tomato MAGIC population. Horticulture Research, 2020, 7, 174.	6.3	9
6	Adaptation to Water and Salt Stresses of Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme. Agronomy, 2020, 10, 1169.	3.0	14
7	Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture Research, 2020, 7, 66.	6.3	49
8	Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm. Frontiers in Plant Science, 2019, 10, 1005.	3.6	71
9	Morphological and Agronomic Characterization of Spanish Landraces of Phaseolus vulgaris L Agriculture (Switzerland), 2019, 9, 149.	3.1	14
10	The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 2019, 51, 1044-1051.	21.4	441
11	Morphological characterization of the cucumber (Cucumis sativus L.) collection of the COMAV's Genebank. Genetic Resources and Crop Evolution, 2018, 65, 1293-1306.	1.6	9
12	Plant Genebanks: Present Situation and Proposals for Their Improvement. the Case of the Spanish Network. Frontiers in Plant Science, 2018, 9, 1794.	3.6	45
13	Resistance to Tomato Yellow Leaf Curl Virus in Tomato Germplasm. Frontiers in Plant Science, 2018, 9, 1198.	3.6	85
14	Molecular characterization of the cucumber (Cucumis sativus L.) accessions held at the COMAV's genebank. Spanish Journal of Agricultural Research, 2018, 16, e0701.	0.6	3
15	Obtaining advanced generations from Solanum peruvianum PI 126944 in the genetic background of S. lycopersicum by immature seed culture. Euphytica, 2017, 213, 1.	1.2	1
16	Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 2017, 213, 1.	1.2	154
17	Angolan vegetable crops have unique genotypes of potential value for future breeding programmes. South African Journal of Science, 2016, 112, 12.	0.7	0
18	Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 2015, 16, 257.	2.8	190

#	Article	IF	CITATIONS
19	Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to tomato yellow leaf curl virus in a broad tomato germplasm. Molecular Breeding, 2015, 35, 132.	2.1	46
20	Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 2015, 72, 420-431.	1.2	17
21	Genetic control and mapping of Solanum chilense LA1932, LA1960 and LA1971-derived resistance to Tomato yellow leaf curl disease. Euphytica, 2013, 190, 203-214.	1.2	22
22	A cytochrome P450 regulates a domestication trait in cultivated tomato. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17125-17130.	7.1	257
23	Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE, 2012, 7, e48198.	2.5	161
24	Exploiting Partial Resistance to <i>Tomato yellow leaf curl virus</i> Derived from <i>Solanum pimpinellifolium</i> UPV16991. Plant Disease, 2008, 92, 1083-1090.	1.4	17
25	Inheritance of Tomato yellow leaf curl virus Resistance Derived from Solanum pimpinellifolium UPV16991. Plant Disease, 2007, 91, 879-885.	1.4	30
26	Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. European Journal of Plant Pathology, 2007, 117, 347-356.	1.7	49
27	Evaluation of breeding tomato lines partially resistant to <i>Tomato yellow leaf curl Sardinia virus</i> and <i>Tomato yellow leaf curl virus</i> derived from <i>Lycopersicon chilense</i> Canadian Journal of Plant Pathology, 2005, 27, 268-275.	1.4	14
28	Genetics of tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. European Journal of Plant Pathology, 1998, 104, 499-509.	1.7	57
29	Viral diseases causing the greatest economic losses to the tomato crop. II. The Tomato yellow leaf curl virus — a review. Scientia Horticulturae, 1996, 67, 151-196.	3.6	214
30	Viral diseases causing the greatest economic losses to the tomato crop. I. The Tomato spotted wilt virus $\hat{a} \in \mathbb{Z}$ a review. Scientia Horticulturae, 1996, 67, 117-150.	3.6	102