Maria J DÃ-ez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076166/publications.pdf Version: 2024-02-01

		471509	477307
30	2,151	17	29
papers	citations	h-index	g-index
32	32	32	2519
all docs	docs citations	times ranked	citing authors

Μαρία Ι ΠΔεγ

#	Article	IF	CITATIONS
1	The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 2019, 51, 1044-1051.	21.4	441
2	A cytochrome P450 regulates a domestication trait in cultivated tomato. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17125-17130.	7.1	257
3	Viral diseases causing the greatest economic losses to the tomato crop. II. The Tomato yellow leaf curl virus — a review. Scientia Horticulturae, 1996, 67, 151-196.	3.6	214
4	Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 2015, 16, 257.	2.8	190
5	Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE, 2012, 7, e48198.	2.5	161
6	Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 2017, 213, 1.	1.2	154
7	Viral diseases causing the greatest economic losses to the tomato crop. I. The Tomato spotted wilt virus — a review. Scientia Horticulturae, 1996, 67, 117-150.	3.6	102
8	Resistance to Tomato Yellow Leaf Curl Virus in Tomato Germplasm. Frontiers in Plant Science, 2018, 9, 1198.	3.6	85
9	Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm. Frontiers in Plant Science, 2019, 10, 1005.	3.6	71
10	Genetics of tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. European Journal of Plant Pathology, 1998, 104, 499-509.	1.7	57
11	Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. European Journal of Plant Pathology, 2007, 117, 347-356.	1.7	49
12	Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture Research, 2020, 7, 66.	6.3	49
13	Global range expansion history of pepper (<i>Capsicum</i> spp.) revealed by over 10,000 genebank accessions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	48
14	Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to tomato yellow leaf curl virus in a broad tomato germplasm. Molecular Breeding, 2015, 35, 132.	2.1	46
15	Plant Genebanks: Present Situation and Proposals for Their Improvement. the Case of the Spanish Network. Frontiers in Plant Science, 2018, 9, 1794.	3.6	45
16	Inheritance of Tomato yellow leaf curl virus Resistance Derived from Solanum pimpinellifolium UPV16991. Plant Disease, 2007, 91, 879-885.	1.4	30
17	Genetic control and mapping of Solanum chilense LA1932, LA1960 and LA1971-derived resistance to Tomato yellow leaf curl disease. Euphytica, 2013, 190, 203-214.	1.2	22
18	Exploiting Partial Resistance to <i>Tomato yellow leaf curl virus</i> Derived from <i>Solanum pimpinellifolium</i> UPV16991. Plant Disease, 2008, 92, 1083-1090.	1.4	17

Maria J DÃez

#	Article	IF	CITATIONS
19	Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 2015, 72, 420-431.	1.2	17
20	Resistant Sources and Genetic Control of Resistance to ToLCNDV in Cucumber. Microorganisms, 2021, 9, 913.	3.6	16
21	Evaluation of breeding tomato lines partially resistant to <i>Tomato yellow leaf curl Sardinia virus</i> and <i>Tomato yellow leaf curl virus</i> derived from <i>Lycopersicon chilense</i> . Canadian Journal of Plant Pathology, 2005, 27, 268-275.	1.4	14
22	Morphological and Agronomic Characterization of Spanish Landraces of Phaseolus vulgaris L Agriculture (Switzerland), 2019, 9, 149.	3.1	14
23	Adaptation to Water and Salt Stresses of Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme. Agronomy, 2020, 10, 1169.	3.0	14
24	European traditional tomatoes galore: a result of farmers' selection of a few diversity-rich loci. Journal of Experimental Botany, 2022, 73, 3431-3445.	4.8	11
25	Morphological characterization of the cucumber (Cucumis sativus L.) collection of the COMAV's Genebank. Genetic Resources and Crop Evolution, 2018, 65, 1293-1306.	1.6	9
26	Morphoagronomic characterization and whole-genome resequencing of eight highly diverse wild and weedy S. pimpinellifolium and S. lycopersicum var. cerasiforme accessions used for the first interspecific tomato MAGIC population. Horticulture Research, 2020, 7, 174.	6.3	9
27	Molecular characterization of the cucumber (Cucumis sativus L.) accessions held at the COMAV's genebank. Spanish Journal of Agricultural Research, 2018, 16, e0701.	0.6	3
28	Fine tuning European geographic quality labels, an opportunity for horticulture diversification: A tentative proposal for the Spanish case. Food Control, 2021, 129, 108196.	5.5	2
29	Obtaining advanced generations from Solanum peruvianum PI 126944 in the genetic background of S. lycopersicum by immature seed culture. Euphytica, 2017, 213, 1.	1.2	1
30	Angolan vegetable crops have unique genotypes of potential value for future breeding programmes. South African Journal of Science, 2016, 112, 12.	0.7	0