Ming-Jun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076042/publications.pdf Version: 2024-02-01

MINC-IUN CHEN

#	Article	IF	CITATIONS
1	An Efficient Mono-Component Polymeric Intumescent Flame Retardant for Polypropylene: Preparation and Application. ACS Applied Materials & amp; Interfaces, 2014, 6, 7363-7370.	8.0	268
2	Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. Journal of Materials Chemistry A, 2014, 2, 13955.	10.3	220
3	Halogen-Free Flame-Retardant Flexible Polyurethane Foam with a Novel Nitrogen–Phosphorus Flame Retardant. Industrial & Engineering Chemistry Research, 2012, 51, 9769-9776.	3.7	186
4	Flame retardation of polypropylene via a novel intumescent flame retardant: Ethylenediamine-modified ammonium polyphosphate. Polymer Degradation and Stability, 2014, 106, 88-96.	5.8	160
5	Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating. ACS Applied Materials & Interfaces, 2016, 8, 32557-32564.	8.0	157
6	Inherently Flame-Retardant Flexible Polyurethane Foam with Low Content of Phosphorus-Containing Cross-Linking Agent. Industrial & Engineering Chemistry Research, 2014, 53, 1160-1171.	3.7	123
7	Thermally Insulating and Flame-Retardant Polyaniline/Pectin Aerogels. ACS Sustainable Chemistry and Engineering, 2017, 5, 7012-7019.	6.7	119
8	Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polymer Degradation and Stability, 2013, 98, 2011-2020.	5.8	100
9	Efficient Approach to Improving the Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Piperazine-Modified Ammonium Polyphosphate. ACS Applied Materials & Interfaces, 2015, 7, 1780-1786.	8.0	98
10	Influence of Cuprous Oxide on Enhancing the Flame Retardancy and Smoke Suppression of Epoxy Resins Containing Microencapsulated Ammonium Polyphosphate. Industrial & Engineering Chemistry Research, 2015, 54, 12705-12713.	3.7	84
11	Large-scale converting waste coffee grounds into functional carbon materials as high-efficient adsorbent for organic dyes. Bioresource Technology, 2019, 272, 92-98.	9.6	78
12	An Effective Flame Retardant and Smoke Suppression Oligomer for Epoxy Resin. Industrial & Engineering Chemistry Research, 2013, 52, 9397-9404.	3.7	67
13	Cu(0) and Cu(II) decorated graphene hybrid on improving fireproof efficiency of intumescent flame-retardant epoxy resins. Composites Part B: Engineering, 2019, 175, 107189.	12.0	59
14	Imide-DOPO derivative endows epoxy resin with excellent flame retardancy and fluorescence without losing glass transition temperature. Composites Part B: Engineering, 2022, 230, 109553.	12.0	54
15	Facile fabrication of mechanically-strong and flame retardant alginate/clay aerogels. Composites Part B: Engineering, 2019, 164, 18-25.	12.0	51
16	Influence of Valence and Structure of Phosphorus-Containing Melamine Salts on the Decomposition and Fire Behaviors of Flexible Polyurethane Foams. Industrial & Engineering Chemistry Research, 2014, 53, 8773-8783.	3.7	49
17	Environmentally Benign and Self-Extinguishing Multilayer Nanocoating for Protection of Flammable Foam. ACS Applied Materials & Interfaces, 2020, 12, 49130-49137.	8.0	37
18	Self-cross-linked melamine-formaldehyde-pectin aerogel with excellent water resistance and flame retardancy. Carbohydrate Polymers, 2019, 206, 609-615.	10.2	36

Ming-Jun Chen

#	Article	IF	CITATIONS
19	Thermal degradation, flame retardance and mechanical properties of thermoplastic polyurethane composites based on aluminum hypophosphite. Chinese Journal of Polymer Science (English Edition), 2014, 32, 98-107.	3.8	35
20	The synergistic effect of cuprous oxide on an intumescent flame-retardant epoxy resin system. RSC Advances, 2017, 7, 35619-35628.	3.6	33
21	Improvement of the flame retardancy of wood-fibre/polypropylene composites with ideal mechanical properties by a novel intumescent flame retardant system. RSC Advances, 2015, 5, 59865-59873.	3.6	32
22	Full substitution of petroleum-based polyols by phosphorus-containing soy-based polyols for fabricating highly flame-retardant polyisocyanurate foams. Polymer Degradation and Stability, 2018, 154, 312-322.	5.8	31
23	Synergistic effects and flame-retardant mechanism of aluminum diethyl phosphinate in combination with melamine polyphosphate and aluminum oxide in epoxy resin. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1637-1646.	3.6	28
24	Biomass-based coating from chitosan for cotton fabric with excellent flame retardancy and improved durability. Cellulose, 2022, 29, 5289-5303.	4.9	23
25	Flame Retardant Polypropylene Composites with Low Densities. Materials, 2019, 12, 152.	2.9	22
26	Facile fabrication, mechanical property and flame retardancy of aerogel composites based on alginate and melamine-formaldehyde. Polymer, 2019, 181, 121783.	3.8	19
27	Highly efficient flameâ€retardant and transparent epoxy resin. Polymers for Advanced Technologies, 2021, 32, 2940-2952.	3.2	15
28	Improvement of polyurethane film strength by Hâ€bonding crosslinking with hydroxylated melamine. Journal of Applied Polymer Science, 2021, 138, 51411.	2.6	9