Galina K Sukhova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076039/publications.pdf

Version: 2024-02-01

126907 182427 9,031 51 33 51 citations h-index g-index papers 51 51 51 11389 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. New England Journal of Medicine, 2017, 377, 111-121.	27.0	1,738
2	Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature, 1998, 394, 200-203.	27.8	851
3	Evidence for Increased Collagenolysis by Interstitial Collagenases-1 and -3 in Vulnerable Human Atheromatous Plaques. Circulation, 1999, 99, 2503-2509.	1.6	623
4	PPARα Activators Inhibit Cytokine-Induced Vascular Cell Adhesion Molecule-1 Expression in Human Endothelial Cells. Circulation, 1999, 99, 3125-3131.	1.6	584
5	Expression of Interleukin (IL)-18 and Functional IL-18 Receptor on Human Vascular Endothelial Cells, Smooth Muscle Cells, and Macrophages. Journal of Experimental Medicine, 2002, 195, 245-257.	8.5	455
6	Cystatin C deficiency in human atherosclerosis and aortic aneurysms. Journal of Clinical Investigation, 1999, 104, 1191-1197.	8.2	397
7	Death of Smooth Muscle Cells and Expression of Mediators of Apoptosis by T Lymphocytes in Human Abdominal Aortic Aneurysms. Circulation, 1999, 99, 96-104.	1.6	367
8	PPARÎ ³ Activation in Human Endothelial Cells Increases Plasminogen Activator Inhibitor Type-1 Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 546-551.	2.4	355
9	TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. European Heart Journal, 2015, 36, 1394-1404.	2.2	285
10	Systemic Delivery of MicroRNA-181b Inhibits Nuclear Factor-κB Activation, Vascular Inflammation, and Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation Research, 2014, 114, 32-40.	4.5	263
11	Regulation of Matrix Metalloproteinase Expression in Human Vascular Smooth Muscle Cells by T Lymphocytes. Circulation Research, 1997, 81, 448-454.	4.5	262
12	Evidence for Altered Balance Between Matrix Metalloproteinases and Their Inhibitors in Human Aortic Diseases. Circulation, 1997, 95, 205-212.	1.6	251
13	Statins Reduce Inflammation in Atheroma of Nonhuman Primates Independent of Effects on Serum Cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1452-1458.	2.4	215
14	Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. Journal of Clinical Investigation, 2007, 117, 3359-3368.	8.2	209
15	Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury. Circulation Research, 2018, 123, 33-42.	4.5	205
16	TH2 Predominant Immune Responses Prevail in Human Abdominal Aortic Aneurysm. American Journal of Pathology, 2002, 161, 499-506.	3.8	183
17	Augmented Expression and Activity of Extracellular Matrix-Degrading Enzymes in Regions of Low Endothelial Shear Stress Colocalize With Coronary Atheromata With Thin Fibrous Caps in Pigs. Circulation, 2011, 123, 621-630.	1.6	142
18	Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice. Circulation Research, 2017, 121, 31-42.	4.5	141

#	Article	IF	Citations
19	Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nature Reviews Cardiology, 2018, 15, 351-370.	13.7	136
20	Moderate Hypoxia Potentiates Interleukin- \hat{l}^2 Production in Activated Human Macrophages. Circulation Research, 2014, 115, 875-883.	4.5	123
21	Expression of Tissue Inhibitor of Metalloproteinases-3 in Human Atheroma and Regulation in Lesion-Associated Cells. Circulation Research, 1998, 83, 270-278.	4.5	111
22	Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. European Heart Journal, 2019, 40, 2482-2491.	2.2	102
23	Cathepsin K Deficiency Reduces Elastase Perfusion–Induced Abdominal Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 15-23.	2.4	89
24	Molecular Determinants of Atherosclerotic Plaque Vulnerability ^a . Annals of the New York Academy of Sciences, 1997, 811, 134-145.	3.8	81
25	Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nature Medicine, 2015, 21, 820-826.	30.7	81
26	Increased Microvascularization and Vessel Permeability Associate With Active Inflammation in Human Atheromata. Circulation: Cardiovascular Imaging, 2014, 7, 920-929.	2.6	74
27	Cathepsin L Activity Is Essential to Elastase Perfusion–Induced Abdominal Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2500-2508.	2.4	71
28	Rap1 induces cytokine production in pro-inflammatory macrophages through NFκB signaling and is highly expressed in human atherosclerotic lesions. Cell Cycle, 2015, 14, 3580-3592.	2.6	66
29	Angiotensin II-induced TLR4 mediated abdominal aortic aneurysm in apolipoprotein E knockout mice is dependent on STAT3. Journal of Molecular and Cellular Cardiology, 2015, 87, 160-170.	1.9	60
30	LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight, 2020, 5, .	5.0	53
31	S100A9-RAGE Axis Accelerates Formation of Macrophage-Mediated Extracellular Vesicle Microcalcification in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1838-1853.	2.4	52
32	Adipocytes promote interleukin-18 binding to its receptors during abdominal aortic aneurysm formation in mice. European Heart Journal, 2020, 41, 2456-2468.	2.2	42
33	IgE Contributes to Atherosclerosis and Obesity by Affecting Macrophage Polarization, Macrophage Protein Network, and Foam Cell Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 597-610.	2.4	41
34	Eosinophils Protect Mice From Angiotensin-II Perfusion–Induced Abdominal Aortic Aneurysm. Circulation Research, 2021, 128, 188-202.	4.5	33
35	Differential Roles of Cysteinyl Cathepsins in TGF- \hat{l}^2 Signaling and Tissue Fibrosis. IScience, 2019, 19, 607-622.	4.1	30
36	A Smooth Muscle Cell–Enriched Long Noncoding RNA Regulates Cell Plasticity and Atherosclerosis by Interacting With Serum Response Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2399-2416.	2.4	30

#	Article	IF	CITATIONS
37	CXCR3 Controls T-Cell Accumulation in Fat Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1374-1381.	2.4	29
38	Allergic Lung Inflammation Aggravates Angiotensin II–Induced Abdominal Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 69-77.	2.4	29
39	Activation of prostaglandin E2-EP4 signaling reduces chemokine production in adipose tissue. Journal of Lipid Research, 2015, 56, 358-368.	4.2	26
40	Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovascular Research, 2021, 117, 2652-2663.	3.8	24
41	Cathepsin K Deficiency Ameliorates Systemic Lupus Erythematosus-like Manifestations in <i>Faslpr</i> Mice. Journal of Immunology, 2017, 198, 1846-1854.	0.8	21
42	Loss-of-Function Mutations in Dnmt3a and Tet2 Lead to Accelerated Atherosclerosis and Convergent Macrophage Phenotypes in Mice. Blood, 2018, 132, 745-745.	1.4	21
43	Asthma Associates With Human Abdominal Aortic Aneurysm and Rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 570-578.	2.4	20
44	Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling. PLoS ONE, 2016, 11, e0152474.	2.5	16
45	CD74 Deficiency Mitigates Systemic Lupus Erythematosus–like Autoimmunity and Pathological Findings in Mice. Journal of Immunology, 2017, 198, 2568-2577.	0.8	13
46	Prothymosin Alpha: A Novel Contributor to Estradiol Receptor Alpha–Mediated CD8 ⁺ T-Cell Pathogenic Responses and Recognition of Type 1 Collagen in Rheumatic Heart Valve Disease. Circulation, 2022, 145, 531-548.	1.6	12
47	Reduced Nhe1 (Na ⁺ -H ⁺ Exchanger-1) Function Protects ApoE-Deficient Mice From Ang II (Angiotensin II)–Induced Abdominal Aortic Aneurysms. Hypertension, 2020, 76, 87-100.	2.7	7
48	Deficiency of FcϵR1 Increases Body Weight Gain but Improves Glucose Tolerance in Diet-Induced Obese Mice. Endocrinology, 2015, 156, 4047-4058.	2.8	5
49	Tilting at the tilted protease balance in arterial aneurysmal disease. Cardiovascular Research, 2017, 113, 1279-1281.	3.8	4
50	Endothelial Activation Potentiates Neointimal Lesion Formation in the Rabbit Aorta after Balloon Injury. Annals of the New York Academy of Sciences, 1997, 811, 448-458.	3.8	2
51	Novel Lesional Transcriptional Signature Separates Atherosclerosis With and Without Diabetes in Yorkshire Swine and Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1487-1503.	2.4	1