Jianfei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3075314/publications.pdf

Version: 2024-02-01

414414 430874 1,023 33 18 32 h-index citations g-index papers 34 34 34 1564 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Triplet Telluropheneâ€Based Acceptors for Organic Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 1096-1102.	13.8	125
2	Tuning V _{oc} for high performance organic ternary solar cells with non-fullerene acceptor alloys. Journal of Materials Chemistry A, 2017, 5, 19697-19702.	10.3	94
3	Significant enhancement of photovoltaic performance through introducing Sâ <n 2017,="" 21674-21678.<="" 5,="" a,="" chemistry="" conformational="" journal="" locks.="" materials="" of="" td=""><td>10.3</td><td>87</td></n>	10.3	87
4	Enhancement of the Oxygen Reduction Reaction Activity of Pt by Tuning Its <i>d</i> -Band Center via Transition Metal Oxide Support Interactions. ACS Catalysis, 2021, 11, 9317-9332.	11.2	87
5	A robust and low-cost biomass carbon fiber@SiO2 interlayer for reliable lithium-sulfur batteries. Electrochimica Acta, 2019, 295, 684-692.	5 . 2	56
6	Simultaneous Enhancement of Three Parameters of P3HTâ€Based Organic Solar Cells with One Oxygen Atom. Advanced Energy Materials, 2019, 9, 1803012.	19.5	54
7	Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. Electrochem, 2020, 1, 124-159.	3.3	53
8	A lightweight and binder-free electrode enabled by lignin fibers@carbon-nanotubes and graphene for ultrastable lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 23486-23494.	10.3	45
9	Wide bandgap small molecular acceptors for low energy loss organic solar cells. Journal of Materials Chemistry C, 2017, 5, 12591-12596.	5.5	39
10	Enhanced lithium and electron diffusion of LiFePO4 cathode with two-dimensional Ti3C2 MXene nanosheets. Journal of Materials Science, 2018, 53, 11078-11090.	3.7	38
11	Effects of graphene with different sizes as conductive additives on the electrochemical performance of a LiFePO ₄ cathode. RSC Advances, 2017, 7, 20882-20887.	3.6	33
12	Iris-Like Acceptor with Most PDI Units for Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28812-28818.	8.0	32
13	In Situ Ionâ€Conducting Protective Layer Strategy to Stable Lithium Metal Anode for Allâ€Solidâ€State Sulfideâ€Based Lithium Metal Batteries. Advanced Materials Interfaces, 2021, 8, .	3.7	32
14	Reliable Interlayer Based on Hybrid Nanocomposites and Carbon Nanotubes for Lithium–Sulfur Batteries. ACS Applied Materials & Diterfaces, 2019, 11, 15607-15615.	8.0	30
15	Perylene Diimideâ€Based Conjugated Polymers for Allâ€Polymer Solar Cells. Chemistry - A European Journal, 2020, 26, 12510-12522.	3.3	29
16	Significant enhancement of responsivity of organic photodetectors upon molecular engineering. Journal of Materials Chemistry C, 2019, 7, 5739-5747.	5 . 5	28
17	Triplet Telluropheneâ€Based Acceptors for Organic Solar Cells. Angewandte Chemie, 2018, 130, 1108-1114.	2.0	26
18	Combination of noncovalent conformational locks and side chain engineering to tune the crystallinity of nonfullerene acceptors for high-performance P3HT based organic solar cells. Materials Chemistry Frontiers, 2019, 3, 64-69.	5.9	24

#	Article	IF	CITATIONS
19	Analysis of the relationship between vertical imparity distribution of conductive additive and electrochemical behaviors in lithium ion batteries. Electrochimica Acta, 2018, 269, 422-428.	5.2	17
20	Improvement of superior cycle performance of LiNi0.8Co0.15Al0.05O2 cathode for lithium-ion batteries by multiple compound modifications. Journal of Electroanalytical Chemistry, 2019, 838, 178-185.	3.8	15
21	High-Efficiency Electrolyte for Li-Rich Cathode Materials Achieving Enhanced Cycle Stability and Suppressed Voltage Fading Capable of Practical Applications on a Li-Ion Battery. ACS Applied Materials & Linguista & Linguist	8.0	15
22	Multiply depolarized composite cathode of Li1.2Mn0.54Ni0.13Co0.13O2 embedded in a combinatory conductive network for lithium-ion battery with superior overall performances. Journal of Alloys and Compounds, 2018, 744, 41-50.	5.5	12
23	Dilute Electrolyte to Mitigate Capacity Decay and Voltage Fading of Co-Free Li-Rich Cathode for Next-Generation Li-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12264-12275.	8.0	11
24	Surface double coating of a LiNiaCobAl1â^aâ^bO2 (a > 0.85) cathode with TiOx and Li2CO3 to apply a water-based hybrid polymer binder to Li-ion batteries. RSC Advances, 2020, 10, 13642-13654.	3.6	9
25	The influence of deposited potential on the ORR activity of Pt catalysts on glassy carbon electrode. RSC Advances, 2017, 7, 25429-25436.	3.6	7
26	Designing conductive networks of hybrid carbon enables stable and long-lifespan cotton-fiber-based lithium–sulfur batteries. RSC Advances, 2021, 11, 34955-34962.	3.6	6
27	Sb―and Oâ€Cosubstituted Li ₁₀ SnP ₂ S ₁₂ with High Electrochemical and Air Stability for Allâ€Solidâ€State Lithium Batteries. ChemElectroChem, 2022, 9, .	3.4	6
28	Microwave-Assisted Classic Ullmann C–C Coupling Polymerization for Acceptor-Acceptor Homopolymers. Polymers, 2019, 11, 1741.	4.5	3
29	Surface coating of a LiNi _{<i>x</i>} Co _{<i>y</i>} Al _{1â^'<i>x</i>} O ₂ (<i>x</i> 6.30 cathode with Li ₃ PO ₄ for applying a water-based hybrid polymer binder during Li-ion battery preparation. RSC Advances, 2021, 11, 37150-37161.	3.6	3
30	Multichalcogen-Integrated Cathodes for Novel Lithium-Chalcogenide Batteries in Ether and Ester Electrolytes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32112-32123.	8.0	3
31	The effect of cooling process on the structure and charge/discharge capacities of Li-rich solid-solution layered oxide cathode materials for the Li-ion battery. RSC Advances, 2021, 11, 1715-1728.	3.6	2
32	Mitigated voltage decay and improved electrochemical properties of 0.5Li2MnO3â [™] 0.5LiNixCoyMn1-x-yO2 cathode via composition optimizing. Ionics, 2021, 27, 2889-2900.	2.4	1
33	Frontispiece: Perylene Diimideâ€Based Conjugated Polymers for Allâ€Polymer Solar Cells. Chemistry - A European Journal, 2020, 26, .	3.3	0