
Giulia Chiabotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3075294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Vesicles Derived from Human Liver Stem Cells Attenuate Chronic Kidney Disease Development in an In Vivo Experimental Model of Renal Ischemia and Reperfusion Injury. International Journal of Molecular Sciences, 2022, 23, 1485.	4.1	6
2	A First Phenotypic and Functional Characterization of Placental Extracellular Vesicles from Women with Multiple Sclerosis. International Journal of Molecular Sciences, 2021, 22, 2875.	4.1	3
3	Human Liver Stem Cells: A Liver-Derived Mesenchymal Stromal Cell-Like Population With Pro-regenerative Properties. Frontiers in Cell and Developmental Biology, 2021, 9, 644088.	3.7	20
4	Human Liver Stem Cell-Derived Extracellular Vesicles Target Hepatic Stellate Cells and Attenuate Their Pro-fibrotic Phenotype. Frontiers in Cell and Developmental Biology, 2021, 9, 777462.	3.7	19
5	PARP1 Inhibitor and Trabectedin Combination Does Not Increase Tumor Mutational Burden in Advanced Sarcomas—A Preclinical and Translational Study. Cancers, 2021, 13, 6295.	3.7	0
6	HLSC-Derived Extracellular Vesicles Attenuate Liver Fibrosis and Inflammation in a Murine Model of Non-alcoholic Steatohepatitis. Molecular Therapy, 2020, 28, 479-489.	8.2	86
7	Molecular Pathways Modulated by Mesenchymal Stromal Cells and Their Extracellular Vesicles in Experimental Models of Liver Fibrosis. Frontiers in Cell and Developmental Biology, 2020, 8, 594794.	3.7	17
8	Role of ncRNAs in modulation of liver fibrosis by extracellular vesicles. ExRNA, 2020, 2, .	1.0	5
9	Extracellular Vesicles: A Therapeutic Option for Liver Fibrosis. International Journal of Molecular Sciences, 2020, 21, 4255.	4.1	34
10	Pazopanib and Trametinib as a Synergistic Strategy against Osteosarcoma: Preclinical Activity and Molecular Insights. Cancers, 2020, 12, 1519.	3.7	15
11	Salivary Extracellular Vesicle-Associated exRNA as Cancer Biomarker. Cancers, 2019, 11, 891.	3.7	37
12	Role of extracellular vesicles in stem cell biology. American Journal of Physiology - Cell Physiology, 2019, 317, C303-C313.	4.6	44
13	<scp>TFEB</scp> controls vascular development by regulating the proliferation of endothelial cells. EMBO Journal, 2019, 38, .	7.8	55
14	Trabectedin and olaparib in patients with advanced and non-resectable bone and soft-tissue sarcomas (TOMAS): an open-label, phase 1b study from the Italian Sarcoma Group. Lancet Oncology, The, 2018, 19, 1360-1371.	10.7	61
15	Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2017, 23, 1262-1273.	3.1	159
16	PARP1 expression drives the synergistic antitumor activity of trabectedin and PARP1 inhibitors in sarcoma preclinical models. Molecular Cancer, 2017, 16, 86.	19.2	49
17	Isolation and characterization of renal cancer stem cells from patient-derived xenografts. Oncotarget, 2016, 7, 15507-15524.	1.8	20
18	Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles. PLoS ONE, 2016, 11, e0159163.	2.5	22

#	Article	IF	CITATIONS
19	Concise Review: Different Mesenchymal Stromal/Stem Cell Populations Reside in the Adult Kidney. Stem Cells Translational Medicine, 2014, 3, 1451-1455.	3.3	23