Roberto Megias-Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3075222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Different Shades of Kale—Approaches to Analyze Kale Variety Interrelations. Genes, 2022, 13, 232.	2.4	4
2	Cocoa origin classifiability through LC-MS data: A statistical approach for large and long-term datasets. Food Research International, 2021, 140, 109983.	6.2	7
3	HPLC-MS-based design of experiments approach on cocoa roasting. Food Chemistry, 2021, 360, 129694.	8.2	3
4	Changes in low molecular weight carbohydrates in kale during development and acclimation to cold temperatures determined by chromatographic techniques coupled to mass spectrometry. Food Research International, 2020, 127, 108727.	6.2	18
5	Monitoring the changes in low molecular weight carbohydrates in cocoa beans during spontaneous fermentation: A chemometric and kinetic approach. Food Research International, 2020, 128, 108865.	6.2	10
6	GADL1 is a multifunctional decarboxylase with tissue-specific roles in β-alanine and carnosine production. Science Advances, 2020, 6, eabb3713.	10.3	27
7	Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Research International, 2020, 133, 109122.	6.2	16
8	Investigating time dependent cocoa bean fermentation by ESI-FT-ICR mass spectrometry. Food Research International, 2020, 133, 109209.	6.2	7
9	Novel Amadori and Heyns compounds derived from short peptides found in dried cocoa beans. Food Research International, 2020, 133, 109164.	6.2	18
10	Diseaseâ€specific phenotypes in <scp>iPSC</scp> â€derived neural stem cells with <i> <scp>POLG</scp> </i> mutations. EMBO Molecular Medicine, 2020, 12, e12146.	6.9	38
11	Characterization of commercial green tea leaves by the analysis of low molecular weight carbohydrates and other quality indicators. Food Chemistry, 2019, 290, 159-167.	8.2	11
12	Analysis of minor low molecular weight carbohydrates in cocoa beans by chromatographic techniques coupled to mass spectrometry. Journal of Chromatography A, 2019, 1584, 135-143.	3.7	15
13	Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans. Food Research International, 2018, 109, 506-516.	6.2	51
14	Differentiation of black tea infusions according to origin, processing and botanical varieties using multivariate statistical analysis of LC-MS data. Food Research International, 2018, 109, 387-402.	6.2	65
15	Profiling, quantification and classification of cocoa beans based on chemometric analysis of carbohydrates using hydrophilic interaction liquid chromatography coupled to mass spectrometry. Food Chemistry, 2018, 258, 284-294.	8.2	41
16	Profiling and Quantification of Regioisomeric Caffeoyl Glucoses in Berry Fruits. Journal of Agricultural and Food Chemistry, 2018, 66, 1096-1104.	5.2	9
17	Über die Chemie der Schokoladenherstellung. Nachrichten Aus Der Chemie, 2018, 66, 965-970.	0.0	2
18	Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocca beans. Food Research International, 2018, 111, 137-147	6.2	45

ROBERTO MEGIAS-PEREZ

#	Article	IF	CITATIONS
19	Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 2017, 99, 550-559.	6.2	74
20	Diversity of Kale (Brassica oleraceavar.sabellica): Glucosinolate Content and Phylogenetic Relationships. Journal of Agricultural and Food Chemistry, 2016, 64, 3215-3225.	5.2	49
21	Biochemical fate of vicilin storage protein during fermentation and drying of cocoa beans. Food Research International, 2016, 90, 53-65.	6.2	33
22	Aseptic artificial fermentation of cocoa beans can be fashioned to replicate the peptide profile of commercial cocoa bean fermentations. Food Research International, 2016, 89, 764-772.	6.2	30
23	Presence of galactooligosaccharides and furosine in special dairy products designed for elderly people. Food Chemistry, 2015, 172, 481-485.	8.2	15
24	Fourier transform ion cyclotron resonance mass spectrometrical analysis of raw fermented cocoa beans of Cameroon and Ivory Coast origin. Food Research International, 2014, 64, 958-961.	6.2	20
25	Survey of quality indicators in commercial dehydrated fruits. Food Chemistry, 2014, 150, 41-48.	8.2	57
26	Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries. Food Chemistry, 2014, 153, 164-170.	8.2	60
27	Impact of high-intensity ultrasound on the formation of lactulose and Maillard reaction glycoconjugates. Food Chemistry, 2014, 157, 186-192.	8.2	56
28	Identification of novel cocoa flavonoids from raw fermented cocoa beans by HPLC–MSn. Food Research International, 2014, 63, 353-359.	6.2	46
29	Determinación de triptasa en el lÃquido de una ampolla en un caso de mastocitosis cutánea eritrodérmica difusa. Revista Del Laboratorio ClÃnico, 2012, 5, 127-129.	0.1	0
30	The chemistry of low molecular weight black tea polyphenols. Natural Product Reports, 2010, 27, 417.	10.3	151