Chaok Seok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3075140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 2013, 41, W384-W388.	6.5	735
2	GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 2012, 40, W294-W297.	6.5	603
3	Use of the Weighted Histogram Analysis Method for the Analysis of Simulated and Parallel Tempering Simulations. Journal of Chemical Theory and Computation, 2007, 3, 26-41.	2.3	416
4	Pulsating Tubules from Noncovalent Macrocycles. Science, 2012, 337, 1521-1526.	6.0	298
5	Using quaternions to calculate RMSD. Journal of Computational Chemistry, 2004, 25, 1849-1857.	1.5	296
6	A kinematic view of loop closure. Journal of Computational Chemistry, 2004, 25, 510-528.	1.5	265
7	Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane. Journal of Physical Chemistry B, 2020, 124, 7128-7137.	1.2	240
8	GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Research, 2015, 43, W431-W435.	6.5	236
9	Prediction of homoprotein and heteroprotein complexes by protein docking and templateâ€based modeling: A CASPâ€CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2016, 84, 323-348.	1.5	148
10	Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology. Journal of Molecular Biology, 2011, 414, 289-302.	2.0	131
11	GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Research, 2017, 45, W320-W324.	6.5	102
12	The FALC-Loop web server for protein loop modeling. Nucleic Acids Research, 2011, 39, W210-W214.	6.5	101
13	Blind prediction of homo―and heteroâ€protein complexes: The CASP13â€CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1200-1221.	1.5	99
14	GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking. Scientific Reports, 2016, 6, 32153.	1.6	94
15	Protein loop modeling by using fragment assembly and analytical loop closure. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3428-3436.	1.5	90
16	Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1980-1987.	1.5	87
17	GalaxyTBM: template-based modeling by building a reliable core and refining unreliable local regions. BMC Bioinformatics, 2012, 13, 198.	1.2	86
18	The challenge of modeling protein assemblies: the CASP12 APRI experiment. Proteins: Structure, Function and Bioinformatics, 2018, 86, 257-273.	1.5	85

#	Article	IF	CITATIONS
19	GalaxySite: ligand-binding-site prediction by using molecular docking. Nucleic Acids Research, 2014, 42, W210-W214.	6.5	80
20	Effective protein model structure refinement by loop modeling and overall relaxation. Proteins: Structure, Function and Bioinformatics, 2016, 84, 293-301.	1.5	79
21	Protein Loop Modeling Using a New Hybrid Energy Function and Its Application to Modeling in Inaccurate Structural Environments. PLoS ONE, 2014, 9, e113811.	1.1	78
22	The flexibility in the proline ring couples to the protein backbone. Protein Science, 2005, 14, 1011-1018.	3.1	77
23	Prediction of protein assemblies, the next frontier: The <scp>CASP14 APRI</scp> experiment. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1800-1823.	1.5	73
24	GalaxyRefine2: simultaneous refinement of inaccurate local regions and overall protein structure. Nucleic Acids Research, 2019, 47, W451-W455.	6.5	66
25	Refinement of unreliable local regions in templateâ€based protein models. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1974-1986.	1.5	62
26	Structure, Dynamics, Receptor Binding, and Antibody Binding of the Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein in a Viral Membrane. Journal of Chemical Theory and Computation, 2021, 17, 2479-2487.	2.3	62
27	GalaxyDock2: Protein–ligand docking using betaâ€complex and global optimization. Journal of Computational Chemistry, 2013, 34, 2647-2656.	1.5	60
28	GalaxyDock: Protein–Ligand Docking with Flexible Protein Side-chains. Journal of Chemical Information and Modeling, 2012, 52, 3225-3232.	2.5	59
29	<i>De novo</i> protein structure prediction by dynamic fragment assembly and conformational space annealing. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2403-2417.	1.5	54
30	Assessment of protein model structure accuracy estimation in CASP13: Challenges in the era of deep learning. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1351-1360.	1.5	54
31	Blind prediction of interfacial water positions in CAPRI. Proteins: Structure, Function and Bioinformatics, 2014, 82, 620-632.	1.5	50
32	Resultants and loop closure. International Journal of Quantum Chemistry, 2006, 106, 176-189.	1.0	49
33	Assessment of protein model structure accuracy estimation in <scp>CASP14</scp> : Old and new challenges. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1940-1948.	1.5	48
34	GalaxyDock BP2 score: a hybrid scoring function for accurate protein–ligand docking. Journal of Computer-Aided Molecular Design, 2017, 31, 653-666.	1.3	44
35	Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains. Nature Communications, 2020, 11, 5357.	5.8	44
36	GalaxyTongDock: Symmetric and asymmetric <i>ab initio</i> protein–protein docking web server with improved energy parameters. Journal of Computational Chemistry, 2019, 40, 2413-2417.	1.5	41

#	Article	IF	CITATIONS
37	LigDockCSA: Protein–ligand docking using conformational space annealing. Journal of Computational Chemistry, 2011, 32, 3226-3232.	1.5	40
38	What stabilizes close arginine pairing in proteins?. Physical Chemistry Chemical Physics, 2013, 15, 5844.	1.3	40
39	Strength of Cαâ^'H···OC Hydrogen Bonds in Transmembrane Proteins. Journal of Physical Chemistry B, 2008, 112, 1041-1048.	1.2	39
40	Insertion-Duplication Mutagenesis inStreptococcus pneumoniae: Targeting Fragment Length Is a Critical Parameter in Use as a Random Insertion Tool. Applied and Environmental Microbiology, 1998, 64, 4796-4802.	1.4	39
41	GalaxyGemini: a web server for protein homo-oligomer structure prediction based on similarity. Bioinformatics, 2013, 29, 1078-1080.	1.8	38
42	High-resolution protein–protein docking by global optimization: recent advances and future challenges. Current Opinion in Structural Biology, 2015, 35, 24-31.	2.6	36
43	Cooperativity and Specificity of Cys2His2 Zinc Finger Proteinâ^'DNA Interactions: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2010, 114, 7662-7671.	1.2	35
44	Nucleation in n-alkanes: A density-functional approach. Journal of Chemical Physics, 1998, 109, 7982-7990.	1.2	34
45	Transmembrane Signaling of Chemotaxis Receptor Tar: Insights from Molecular Dynamics Simulation Studies. Biophysical Journal, 2011, 100, 2955-2963.	0.2	33
46	Galaxy7TM: flexible GPCR–ligand docking by structure refinement. Nucleic Acids Research, 2016, 44, W502-W506.	6.5	33
47	Biophysical and functional characterization of Norrin signaling through Frizzled4. Proceedings of the United States of America, 2018, 115, 8787-8792.	3.3	30
48	Prediction of Molecular Electronic Transitions Using Random Forests. Journal of Chemical Information and Modeling, 2020, 60, 5984-5994.	2.5	30
49	A statistical rescoring scheme for protein–ligand docking: Consideration of entropic effect. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1074-1083.	1.5	29
50	Measured and predicted affinities of binding and relative potencies to activate the AhR of PAHs and their alkylated analogues. Chemosphere, 2015, 139, 23-29.	4.2	28
51	GalaxySagittarius: Structure- and Similarity-Based Prediction of Protein Targets for Druglike Compounds. Journal of Chemical Information and Modeling, 2020, 60, 3246-3254.	2.5	27
52	Transition between B-DNA and Z-DNA: Free Energy Landscape for the Bâ^'Z Junction Propagation. Journal of Physical Chemistry B, 2010, 114, 9872-9881.	1.2	26
53	Refinement of protein termini in templateâ€based modeling using conformational space annealing. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2725-2734.	1.5	25
54	Accurate protein structure prediction: what comes next?. Biodesign, 2021, 9, 47-50.	0.2	25

#	Article	IF	CITATIONS
55	Modeling SARSâ€CoVâ€2 proteins in the CASPâ€commons experiment. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1987-1996.	1.5	24
56	Phase transitions in Agl. Physical Review B, 1997, 56, 11485-11492.	1.1	23
57	Polymer melts and polymer solutions near patterned surfaces. Journal of Chemical Physics, 2000, 112, 6443-6451.	1.2	22
58	Switchable Nanoporous Sheets by the Aqueous Selfâ€Assembly of Aromatic Macrobicycles. Angewandte Chemie, 2013, 125, 6554-6557.	1.6	22
59	Crystal Structure of Streptococcus pyogenes Cas1 and Its Interaction with Csn2 in the Type II CRISPR-Cas System. Structure, 2016, 24, 70-79.	1.6	21
60	Template-Based Prediction of Protein-Peptide Interactions by Using GalaxyPepDock. Methods in Molecular Biology, 2017, 1561, 37-47.	0.4	20
61	Structural basis of neuropeptide Y signaling through Y1 receptor. Nature Communications, 2022, 13, 853.	5.8	20
62	An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12. Scientific Reports, 2018, 8, 9939.	1.6	19
63	Polymer blends near patterned surfaces. Journal of Chemical Physics, 2000, 112, 6452-6460.	1.2	18
64	MOPED: Method for optimizing physical energy parameters using decoys. Journal of Computational Chemistry, 2003, 24, 89-97.	1.5	18
65	Factors affecting redox potential and differential sensitivity of <scp>SoxR</scp> to redoxâ€active compounds. Molecular Microbiology, 2015, 97, 808-821.	1.2	18
66	Benchmarking predictions of allostery in liver pyruvate kinase in CAGI4. Human Mutation, 2017, 38, 1123-1131.	1.1	17
67	GalaxyWater-CNN: Prediction of Water Positions on the Protein Structure by a 3D-Convolutional Neural Network. Journal of Chemical Information and Modeling, 2022, 62, 3157-3168.	2.5	17
68	Absolute binding free energies for octa-acids and guests in SAMPL5. Journal of Computer-Aided Molecular Design, 2017, 31, 107-118.	1.3	16
69	Aldehyde-alcohol dehydrogenase undergoes structural transition to form extended spirosomes for substrate channeling. Communications Biology, 2020, 3, 298.	2.0	16
70	GalaxyDock3: Protein–ligand docking that considers the full ligand conformational flexibility. Journal of Computational Chemistry, 2019, 40, 2739-2748.	1.5	15
71	Simultaneous refinement of inaccurate local regions and overall structure in the CASP12 protein model refinement experiment. Proteins: Structure, Function and Bioinformatics, 2018, 86, 168-176.	1.5	14
72	Structural Basis for the Enantioselectivity of Esterase Est-Y29 toward (<i>S</i>)-Ketoprofen. ACS Catalysis, 2019, 9, 755-767.	5.5	14

#	Article	IF	CITATIONS
73	Discovery, design and synthesis of Y-shaped peroxisome proliferator-activated receptor l̂´agonists as potent anti-obesity agents inÂvivo. European Journal of Medicinal Chemistry, 2012, 53, 190-202.	2.6	13
74	Structure of vaccinia virus A46, an inhibitor of TLR4 signaling pathway, shows the conformation of VIPER motif. Protein Science, 2014, 23, 906-914.	3.1	13
75	Potential Application of Alchemical Free Energy Simulations to Discriminate GPCR Ligand Efficacy. Journal of Chemical Theory and Computation, 2015, 11, 1255-1266.	2.3	13
76	Absolute binding free energy calculations of CBClip host–guest systems in the SAMPL5 blind challenge. Journal of Computer-Aided Molecular Design, 2017, 31, 71-85.	1.3	13
77	Dynamic Interactions of Fully Glycosylated SARS-CoV-2 Spike Protein with Various Antibodies. Journal of Chemical Theory and Computation, 2021, 17, 6559-6569.	2.3	13
78	Order - disorder transition in : a density functional approach. Journal of Physics Condensed Matter, 1997, 9, 87-102.	0.7	12
79	Rotational superposition and least squares: The SVD and quaternions approaches yield identical results. Reply to the preceding comment by G. Kneller. Journal of Computational Chemistry, 2005, 26, 1663-1665.	1.5	12
80	GalaxyHeteromer: protein heterodimer structure prediction by template-based and <i>ab initio</i> docking. Nucleic Acids Research, 2021, 49, W237-W241.	6.5	11
81	Analytic density-functional self-consistent-field theory of diblock copolymers near patterned surfaces. Journal of Chemical Physics, 2004, 120, 7174-7182.	1.2	10
82	Templateâ€based modeling and <i>ab initio</i> refinement of protein oligomer structures using GALAXY in CAPRI round 30. Proteins: Structure, Function and Bioinformatics, 2017, 85, 399-407.	1.5	10
83	GalaxyGPCRloop: Template-Based and <i>Ab Initio</i> Structure Sampling of the Extracellular Loops of G-Protein-Coupled Receptors. Journal of Chemical Information and Modeling, 2018, 58, 1234-1243.	2.5	10
84	A pGpG-specific phosphodiesterase regulates cyclic di-GMP signaling in Vibrio cholerae. Journal of Biological Chemistry, 2022, 298, 101626.	1.6	10
85	Evaluation of GalaxyDock Based on the Community Structure–Activity Resource 2013 and 2014 Benchmark Studies. Journal of Chemical Information and Modeling, 2016, 56, 988-995.	2.5	9
86	Cell–cell adhesion in metazoans relies on evolutionarily conserved features of the α-catenin·β-catenin–binding interface. Journal of Biological Chemistry, 2017, 292, 16477-16490.	1.6	9
87	GalaxyWater-wKGB: Prediction of Water Positions on Protein Structure Using wKGB Statistical Potential. Journal of Chemical Information and Modeling, 2021, 61, 2283-2293.	2.5	9
88	A benchmark study of machine learning methods for molecular electronic transition: Treeâ€based ensemble learning versus graph neural network. Bulletin of the Korean Chemical Society, 2022, 43, 328-335.	1.0	9
89	Mechanism ofAg+ordering in AgI. Physical Review B, 1998, 58, 5146-5148.	1.1	8
90	Discovery of a transdermally deliverable pentapeptide for activating AdipoR1 to promote hair growth. EMBO Molecular Medicine, 2021, 13, e13790.	3.3	7

#	Article	IF	CITATIONS
91	Protein Loop Modeling Using Fragment Assembly. Journal of the Korean Physical Society, 2008, 52, 1137-1142.	0.3	7
92	Bulk and surface nucleation of the order-disorder transition in. Journal of Physics Condensed Matter, 1998, 10, 45-60.	0.7	6
93	Parameter optimization for the Gaussian model of protein folding. Polymer, 2002, 43, 495-501.	1.8	6
94	Alternative zincâ€binding sites explain the redox sensitivity of zincâ€containing antiâ€sigma factors. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1644-1652.	1.5	6
95	Prediction of protein oligomer structures using GALAXY in CASP13. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1233-1240.	1.5	6
96	Novel Compound Heterozygote Mutation in <i>IL10RA</i> in a Patient With Very Early-Onset Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2019, 25, 498-509.	0.9	6
97	Structure prediction of biological assemblies using GALAXY in CAPRI rounds 38â€45. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1009-1017.	1.5	5
98	Symmetry-related residues as promising hotspots for the evolution of <i>de novo</i> oligomeric enzymes. Chemical Science, 2021, 12, 5091-5101.	3.7	5
99	GalaxyDomDock: An Ab Initio Domain–domain Docking Web Server for Multi-domain Protein Structure Prediction. Journal of Molecular Biology, 2022, 434, 167508.	2.0	5
100	Binding Site Prediction of Proteins with Organic Compounds or Peptides Using GALAXY Web Servers. Methods in Molecular Biology, 2016, 1414, 33-45.	0.4	4
101	Protein oligomer structure prediction using GALAXY in CASP14. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1844-1851.	1.5	4
102	Contribution of Counterion Entropy to the Salt-Induced Transition Between B-DNA and Z-DNA. Bulletin of the Korean Chemical Society, 2012, 33, 3719-3726.	1.0	3
103	MOLGENGO: Finding Novel Molecules with Desired Electronic Properties by Capitalizing on Their Global Optimization. ACS Omega, 2021, 6, 27454-27465.	1.6	3
104	New molecular interaction of IIA ^{Ntr} and HPr from <i>Burkholderia pseudomallei</i> identified by Xâ€ray crystallography and docking studies. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1499-1508.	1.5	2
105	Modeling Protein Homo-Oligomer Structures with GalaxyHomomer Web Server. Methods in Molecular Biology, 2020, 2165, 127-137.	0.4	2
106	Cover Image, Volume 85, Issue 3. Proteins: Structure, Function and Bioinformatics, 2017, 85, C4.	1.5	0