## Guido Reifenberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3075137/publications.pdf

Version: 2024-02-01

6131 6613 49,227 169 79 159 citations h-index g-index papers 172 172 172 34596 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Glutaredoxin 2 promotes SP-1-dependent CSPG4 transcription and migration of wound healing NG2 glia and glioma cells: Enzymatic Taoism. Redox Biology, 2022, 49, 102221.                                                                                                      | 9.0  | 6         |
| 2  | Development and external validation of a clinical prediction model for survival in patients with IDH wild-type glioblastoma. Journal of Neurosurgery, 2022, 137, 914-923.                                                                                                    | 1.6  | 7         |
| 3  | Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) expression in glioblastoma is driven by ETS1- and MYBL2-dependent transcriptional activation. Cell Death Discovery, 2022, 8, 91.                                                                    | 4.7  | 6         |
| 4  | Droplet digital PCR-based analyses for robust, rapid, and sensitive molecular diagnostics of gliomas. Acta Neuropathologica Communications, 2022, 10, 42.                                                                                                                    | 5.2  | 15        |
| 5  | EIF4EBP1 is transcriptionally upregulated by MYCN and associates with poor prognosis in neuroblastoma. Cell Death Discovery, 2022, 8, 157.                                                                                                                                   | 4.7  | 3         |
| 6  | The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex $1$ in human SHH-driven tumors. Nature Communications, 2022, $13$ , .                                                                                                                    | 12.8 | 16        |
| 7  | Age-stratified clinical performance and survival of patients with IDH-wildtype glioblastoma homogeneously treated by radiotherapy with concomitant and maintenance temozolomide. Journal of Cancer Research and Clinical Oncology, 2021, 147, 253-262.                       | 2.5  | 8         |
| 8  | The molecular evolution of glioblastoma treated by gross total resection alone. Neuro-Oncology, 2021, 23, 334-336.                                                                                                                                                           | 1.2  | 2         |
| 9  | EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nature Reviews Clinical Oncology, 2021, 18, 170-186.                                                                                                                                         | 27.6 | 826       |
| 10 | <scp><i>MGMT</i></scp> promoter methylation analysis for allocating combined <scp>CCNU</scp> / <scp>TMZ</scp> chemotherapy: Lessons learned from the <scp>CeTeG</scp> / <scp>NOA</scp> â€09 trial. International Journal of Cancer, 2021, 148, 1695-1707.                    | 5.1  | 11        |
| 11 | Chemotherapy for adult patients with spinal cord gliomas. Neuro-Oncology Practice, 2021, 8, 475-484.                                                                                                                                                                         | 1.6  | 1         |
| 12 | Telomerase reverse transcriptase promoter mutation– and O6-methylguanine DNA methyltransferase promoter methylation–mediated sensitivity to temozolomide in isocitrate dehydrogenase–wild-type glioblastoma: is there a link?. European Journal of Cancer, 2021, 147, 84-94. | 2.8  | 10        |
| 13 | Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas. Cancer Discovery, 2021, 11, 2230-2247.                                                                                                                    | 9.4  | 39        |
| 14 | A common classification framework for histone sequence alterations in tumours: an expert consensus proposal. Journal of Pathology, 2021, 254, 109-120.                                                                                                                       | 4.5  | 5         |
| 15 | The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology, 2021, 23, 1231-1251.                                                                                                                                                         | 1.2  | 4,534     |
| 16 | EMBR-13. NOVEL SYNERGISTIC APPROACHES FOR TARGETED THERAPY OF MYC-DRIVEN MEDULLOBLASTOMA USING CRISPR/CAS9 GENE EDITING. Neuro-Oncology, 2021, 23, i8-i8.                                                                                                                    | 1.2  | 0         |
| 17 | Sarcomatous Meningioma: Diagnostic Pitfalls and the Utility of Molecular Testing. Journal of Neuropathology and Experimental Neurology, 2021, 80, 764-768.                                                                                                                   | 1.7  | 4         |
| 18 | The long non-coding RNA HOTAIRM1 promotes tumor aggressiveness and radiotherapy resistance in glioblastoma. Cell Death and Disease, 2021, 12, 885.                                                                                                                           | 6.3  | 22        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Prognostic role of Ki-67 in glioblastomas excluding contribution from non-neoplastic cells. Scientific Reports, 2021, 11, 17918.                                                                                         | 3.3  | 22        |
| 20 | Frequent Epigenetic Inactivation of DIRAS-1 and DIRAS-2 Contributes to Chemo-Resistance in Gliomas. Cancers, 2021, 13, 5113.                                                                                             | 3.7  | 5         |
| 21 | Data Sets for the Reporting of Tumors of the Central Nervous System: Recommendations From The International Collaboration on Cancer Reporting. Archives of Pathology and Laboratory Medicine, 2020, 144, 196-206.        | 2.5  | 21        |
| 22 | FOCAD loss impacts microtubule assembly, G2/M progression and patient survival in astrocytic gliomas. Acta Neuropathologica, 2020, 139, 175-192.                                                                         | 7.7  | 15        |
| 23 | Bevacizumab versus alkylating chemotherapy in recurrent glioblastoma. Journal of Cancer Research and Clinical Oncology, 2020, 146, 659-670.                                                                              | 2.5  | 14        |
| 24 | 4EBP1/2 are active under standard cell culture conditions to regulate the translation of specific mRNAs. Cell Death and Disease, 2020, 11, 968.                                                                          | 6.3  | 3         |
| 25 | Case Report: A Case of Severe Clinical Deterioration in a Patient With Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 782.                                                                                        | 2.4  | 6         |
| 26 | Glioblastoma epigenome profiling identifies SOX10 as a master regulator of molecular tumour subtype. Nature Communications, 2020, 11, 6434.                                                                              | 12.8 | 48        |
| 27 | Beyond the World Health Organization classification of central nervous system tumors 2016: what are the new developments for gliomas from a clinician's perspective?. Current Opinion in Neurology, 2020, 33, 701-706.   | 3.6  | 15        |
| 28 | clMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathologica, 2020, 139, 603-608.                                                                             | 7.7  | 344       |
| 29 | cIMPACTâ€NOW update 6: new entity and diagnostic principle recommendations of the cIMPACTâ€Utrecht meeting on future CNS tumor classification and grading. Brain Pathology, 2020, 30, 844-856.                           | 4.1  | 363       |
| 30 | MBRS-48. IDENTIFICATION OF NOVEL THERAPEUTIC APPROACHES FOR MYC-DRIVEN MEDULLOBLASTOMA. Neuro-Oncology, 2020, 22, iii406-iii406.                                                                                         | 1.2  | 0         |
| 31 | EPEN-33. PHARMACOGENOMICS REVEALS SYNERGISTIC INHIBITION OF ERBB2 AND PI3K SIGNALING AS A THERAPEUTIC STRATEGY FOR EPENDYMOMA. Neuro-Oncology, 2020, 22, iii314-iii314.                                                  | 1.2  | 0         |
| 32 | Improved risk stratification in younger IDH wild-type glioblastoma patients by combining a 4-miRNA signature with MGMT promoter methylation status. Neuro-Oncology Advances, 2020, 2, vdaa137.                           | 0.7  | 2         |
| 33 | <i>MiRâ€16â€5p</i> is frequently downâ€regulated in astrocytic gliomas and modulates glioma cell proliferation, apoptosis and response to cytotoxic therapy. Neuropathology and Applied Neurobiology, 2019, 45, 441-458. | 3.2  | 50        |
| 34 | SIG-03. HHIP-AS1 PROMOTES TUMOR SURVIVAL THROUGH STABILIZING DYNEIN COMPLEX 1 IN HEDGEHOG DRIVEN HUMAN BRAIN TUMORS. Neuro-Oncology, 2019, 21, ii113-ii114.                                                              | 1.2  | 1         |
| 35 | Molecular targeted therapy of glioblastoma. Cancer Treatment Reviews, 2019, 80, 101896.                                                                                                                                  | 7.7  | 386       |
| 36 | A DNA Repair and Cell-Cycle Gene Expression Signature in Primary and Recurrent Glioblastoma: Prognostic Value and Clinical Implications. Cancer Research, 2019, 79, 1226-1238.                                           | 0.9  | 26        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | Citations |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Pathology and Classification of Tumors of theÂCentral Nervous System. , 2019, , 3-89.                                                                                                                                                                           |      | 0         |
| 38 | RhoA regulates translation of the Nogo-A decoy SPARC in white matter-invading glioblastomas. Acta Neuropathologica, 2019, 138, 275-293.                                                                                                                         | 7.7  | 6         |
| 39 | EPEN-08. PHARMACOGENOMICS REVEALS ERBB2 AS A THERAPEUTIC TARGET IN PRIMARY EPENDYMOMA CULTURES. Neuro-Oncology, 2019, 21, ii78-ii79.                                                                                                                            | 1.2  | 0         |
| 40 | Evolutionary Trajectories of IDHWT Glioblastomas Reveal a Common Path of Early Tumorigenesis Instigated Years ahead of Initial Diagnosis. Cancer Cell, 2019, 35, 692-704.e12.                                                                                   | 16.8 | 172       |
| 41 | The IncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death and Disease, 2019, 10, 246.                                                                                  | 6.3  | 129       |
| 42 | Sellar Region Atypical Teratoid/Rhabdoid Tumors (ATRT) in Adults Display DNA Methylation Profiles of the ATRT-MYC Subgroup. American Journal of Surgical Pathology, 2018, 42, 506-511.                                                                          | 3.7  | 43        |
| 43 | EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro-Oncology, 2018, 20, 445-456.                                                                                                                                                         | 1.2  | 173       |
| 44 | DNA methylation-based reclassification of olfactory neuroblastoma. Acta Neuropathologica, 2018, 136, 255-271.                                                                                                                                                   | 7.7  | 59        |
| 45 | USP8 Mutations in Pituitary Cushing Adenomas—Targeted Analysis by Next-Generation Sequencing. Journal of the Endocrine Society, 2018, 2, 266-278.                                                                                                               | 0.2  | 40        |
| 46 | DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.                                                                                                                                                             | 27.8 | 1,872     |
| 47 | A PRDX1â€p38α heterodimer amplifies METâ€driven invasion of <i>IDH</i> a€wildtype and <i>IDH</i> af€mutant gliomas. International Journal of Cancer, 2018, 143, 1176-1187.                                                                                      | 5.1  | 14        |
| 48 | Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathologica, 2018, 136, 273-291.                                                              | 7.7  | 190       |
| 49 | Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma <i>in vitro</i> Oncotarget, 2018, 9, 22703-22716.                                   | 1.8  | 50        |
| 50 | MBRS-16. HDAC AND NFήB ANTAGONISTS SYNERGISTICALLY INHIBIT GROWTH OF MYC-DRIVEN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i131-i131.                                                                                                                           | 1.2  | 0         |
| 51 | cIMPACT-NOW update 3: recommended diagnostic criteria for "Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV― Acta Neuropathologica, 2018, 136, 805-810.                                                           | 7.7  | 599       |
| 52 | ATRT-34. TARGETING PRIMARY CILIOGENESIS IN ATYPICAL TERATOID/RHABDOID TUMORS. Neuro-Oncology, 2018, 20, i35-i35.                                                                                                                                                | 1.2  | 0         |
| 53 | Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathologica, 2018, 136, 793-803. | 7.7  | 195       |
| 54 | Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. Cancer Cell, 2018, 34, 379-395.e7.                                                                                                    | 16.8 | 104       |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | D-2-Hydroxyglutarate Is an Intercellular Mediator in IDH-Mutant Gliomas Inhibiting Complement and T<br>Cells. Clinical Cancer Research, 2018, 24, 5381-5391.                                                                      | 7.0  | 55        |
| 56 | Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Gliomaâ€∓ailored Gene Panel. Brain Pathology, 2017, 27, 146-159.                                                                                           | 4.1  | 130       |
| 57 | European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncology, The, 2017, 18, e315-e329.                                              | 10.7 | 816       |
| 58 | Multidimensional scaling of diffuse gliomas: application to the 2016 World Health Organization classification system with prognostically relevant molecular subtype discovery. Acta Neuropathologica Communications, 2017, 5, 39. | 5.2  | 110       |
| 59 | Limited role for extended maintenance temozolomide for newly diagnosed glioblastoma. Neurology, 2017, 88, 1422-1430.                                                                                                              | 1.1  | 54        |
| 60 | Advances in the molecular genetics of gliomas $\hat{a} \in \text{``implications}$ for classification and therapy. Nature Reviews Clinical Oncology, 2017, 14, 434-452.                                                            | 27.6 | 497       |
| 61 | Announcing clMPACT-NOW: the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy. Acta Neuropathologica, 2017, 133, 1-3.                                                                                 | 7.7  | 120       |
| 62 | Rare ADAR and RNASEH2B variants and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis. Acta Neuropathologica, 2017, 134, 905-922.                                                             | 7.7  | 12        |
| 63 | Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in <i>EGFR</i> Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors. Clinical Cancer Research, 2017, 23, 6846-6855.    | 7.0  | 151       |
| 64 | Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro-Oncology, 2016, 18, now133.                                                      | 1.2  | 130       |
| 65 | Role of micro <scp>RNA</scp> s Located on Chromosome Arm 10q in Malignant Gliomas. Brain Pathology, 2016, 26, 344-358.                                                                                                            | 4.1  | 26        |
| 66 | Molecular classification of gliomas. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 97-120.                                                                                                      | 1.8  | 90        |
| 67 | The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, 2016, 131, 803-820.                                                                                  | 7.7  | 12,144    |
| 68 | Practical implications of integrated glioma classification according to the World Health Organization classification of tumors of the central nervous system 2016. Current Opinion in Oncology, 2016, 28, 494-501.                | 2.4  | 62        |
| 69 | Limited role for transforming growth factor–β pathway activation-mediated escape from VEGF inhibition in murine glioma models. Neuro-Oncology, 2016, 18, 1610-1621.                                                               | 1.2  | 27        |
| 70 | Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastomaâ€"results from the DIRECTOR trial. Neuro-Oncology, 2016, 18, 549-556.                                        | 1.2  | 187       |
| 71 | New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.                                                                                                                           | 28.9 | 702       |
| 72 | Prognostic relevance of miRNA-155 methylation in anaplastic glioma. Oncotarget, 2016, 7, 82028-82045.                                                                                                                             | 1.8  | 21        |

| #  | Article                                                                                                                                                                                                                                                                                     | IF   | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Glioma. Nature Reviews Disease Primers, 2015, 1, 15017.                                                                                                                                                                                                                                     | 30.5 | 718       |
| 74 | Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 2015, 129, 669-678.                                                                                                    | 7.7  | 277       |
| 75 | Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathologica, 2015, 130, 407-417.                                                                                                                                                  | 7.7  | 237       |
| 76 | Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathologica, 2015, 129, 679-693.                                                          | 7.7  | 254       |
| 77 | Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathologica, 2015, 129, 829-848.                                                                                                                                                                                       | 7.7  | 503       |
| 78 | Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial. Neuro-Oncology, 2014, 16, 1630-1638.                                                                                      | 1.2  | 77        |
| 79 | Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. International Journal of Cancer, 2014, 134, 2437-2447.                                           | 5.1  | 100       |
| 80 | MiR-328 promotes glioma cell invasion via SFRP1-dependent Wnt-signaling activation. Neuro-Oncology, 2014, 16, 179-190.                                                                                                                                                                      | 1.2  | 78        |
| 81 | Genomic profiling reveals distinctive molecular relapse patterns in <i>IDH1/2</i> wildâ€ŧype glioblastoma. Genes Chromosomes and Cancer, 2014, 53, 589-605.                                                                                                                                 | 2.8  | 18        |
| 82 | Molecular characterization of long-term survivors of glioblastoma using genome- and transcriptome-wide profiling. International Journal of Cancer, 2014, 135, 1822-1831.                                                                                                                    | 5.1  | 117       |
| 83 | EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncology, The, 2014, 15, e395-e403.                                                                                                                                                           | 10.7 | 647       |
| 84 | Interferon- $\hat{l}^2$ Induces Loss of Spherogenicity and Overcomes Therapy Resistance of Glioblastoma Stem Cells. Molecular Cancer Therapeutics, 2014, 13, 948-961.                                                                                                                       | 4.1  | 47        |
| 85 | <scp>I</scp> nternational <scp>S</scp> ociety of <scp>N</scp> europathologyâ€xscp>Haarlem <scp>C</scp> onsensus <scp>G</scp> uidelines for <scp>N</scp> ervous <scp>S</scp> ystem <scp>T</scp> umor <scp>C</scp> lassification and <scp>G</scp> rading. Brain Pathology, 2014, 24, 429-435. | 4.1  | 499       |
| 86 | Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathologica, 2014, 128, 561-571.                                                                                                            | 7.7  | 176       |
| 87 | MGMT testingâ€"the challenges for biomarker-based glioma treatment. Nature Reviews Neurology, 2014, 10, 372-385.                                                                                                                                                                            | 10.1 | 454       |
| 88 | Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 2013, 45, 927-932.                                                                                                                                                                              | 21.4 | 674       |
| 89 | Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathologica, 2013, 125, 913-916.                                                                              | 7.7  | 244       |
| 90 | EGFR Phosphorylates Tumor-Derived EGFRvIII Driving STAT3/5 and Progression in Glioblastoma. Cancer Cell, 2013, 24, 438-449.                                                                                                                                                                 | 16.8 | 219       |

| #   | Article                                                                                                                                                                                                                                 | IF   | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Prognostic or predictive value of <i>MGMT</i> promoter methylation in gliomas depends on <i>IDH1</i> mutation. Neurology, 2013, 81, 1515-1522.                                                                                          | 1.1  | 211       |
| 92  | Long-Term Survival in Primary Glioblastoma With Versus Without Isocitrate Dehydrogenase Mutations. Clinical Cancer Research, 2013, 19, 5146-5157.                                                                                       | 7.0  | 157       |
| 93  | Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathologica, 2012, 124, 615-625.                                                                     | 7.7  | 376       |
| 94  | Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncology, The, 2012, 13, 707-715.                                                      | 10.7 | 980       |
| 95  | Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell, 2012, 22, 425-437.                                                                                                | 16.8 | 1,551     |
| 96  | Distinct molecular mechanisms of acquired resistance to temozolomide in glioblastoma cells. Journal of Neurochemistry, 2012, 122, 444-455.                                                                                              | 3.9  | 120       |
| 97  | Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012, 482, 226-231.                                                                                                                | 27.8 | 2,129     |
| 98  | Predictive impact of <i>MGMT</i> promoter methylation in glioblastoma of the elderly. International Journal of Cancer, 2012, 131, 1342-1350.                                                                                            | 5.1  | 220       |
| 99  | DNA Hypermethylation and Histone Modifications Downregulate the Candidate Tumor Suppressor Gene <i>RRP22</i> on 22q12 in Human Gliomas. Brain Pathology, 2012, 22, 17-25.                                                               | 4.1  | 21        |
| 100 | Unraveling the Glioma Epigenomeâ€"From Molecular Mechanisms to Novel Biomarkers and Therapeutic Targets. Brain Pathology, 2011, 21, 619-632.                                                                                            | 4.1  | 38        |
| 101 | Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathologica, 2011, 121, 397-405. | 7.7  | 914       |
| 102 | SOCS3 promoter methylation is mutually exclusive to EGFR amplification in gliomas and promotes glioma cell invasion through STAT3 and FAK activation. Acta Neuropathologica, 2011, 122, 241-251.                                        | 7.7  | 70        |
| 103 | Molecular signatures classify astrocytic gliomas by <i>IDH1</i> mutation status. International Journal of Cancer, 2011, 128, 1095-1103.                                                                                                 | 5.1  | 75        |
| 104 | Promoter methylation and expression of <i>MGMT</i> and the DNA mismatch repair genes <i>MLH1, MSH2, MSH6</i> and <i>PMS2</i> in paired primary and recurrent glioblastomas. International Journal of Cancer, 2011, 129, 659-670.        | 5.1  | 247       |
| 105 | Molecular Markers in Low-Grade Gliomas: Predictive or Prognostic?. Clinical Cancer Research, 2011, 17, 4588-4599.                                                                                                                       | 7.0  | 179       |
| 106 | Differential Retinoic Acid Signaling in Tumors of Long- and Short-term Glioblastoma Survivors. Journal of the National Cancer Institute, 2011, 103, 598-601.                                                                            | 6.3  | 46        |
| 107 | MGMT promoter methylation in malignant gliomas: ready for personalized medicine?. Nature Reviews Neurology, 2010, 6, 39-51.                                                                                                             | 10.1 | 644       |
| 108 | Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathologica, 2010, 119, 501-507.                                                                         | 7.7  | 108       |

| #   | Article                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Molecular diagnostics of gliomas: state of the art. Acta Neuropathologica, 2010, 120, 567-584.                                                                                                                                                                                              | 7.7 | 243       |
| 110 | Molecular diagnostics of brain tumors. Acta Neuropathologica, 2010, 120, 549-551.                                                                                                                                                                                                           | 7.7 | 4         |
| 111 | Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathologica, 2010, 120, 707-718. | 7.7 | 719       |
| 112 | MGMT promoter methylation in malignant gliomas. Targeted Oncology, 2010, 5, 161-165.                                                                                                                                                                                                        | 3.6 | 66        |
| 113 | Primary CNS lymphoma in the elderly: temozolomide therapy and MGMT status. Journal of Neuro-Oncology, 2010, 97, 389-392.                                                                                                                                                                    | 2.9 | 72        |
| 114 | Identification and Functional Characterization of microRNAs Involved in the Malignant Progression of Gliomas. Brain Pathology, 2010, 20, 539-550.                                                                                                                                           | 4.1 | 324       |
| 115 | Hypermethylation and Transcriptional Downregulation of the <i>TIMP3</i> Gene is Associated with Allelic Loss on 22q12.3 and Malignancy in Meningiomas. Brain Pathology, 2010, 20, 623-631.                                                                                                  | 4.1 | 74        |
| 116 | Epigenetic Downregulation of Mitogen-Activated Protein Kinase Phosphatase MKP-2 Relieves Its Growth Suppressive Activity in Glioma Cells. Cancer Research, 2010, 70, 1689-1699.                                                                                                             | 0.9 | 66        |
| 117 | Differential proteome analysis of human gliomas stratified for loss of heterozygosity on chromosomal arms 1p and 19q. Neuro-Oncology, 2010, 12, 243-256.                                                                                                                                    | 1.2 | 32        |
| 118 | Pathology and Classification of Tumors of the Nervous System. , 2010, , 3-75.                                                                                                                                                                                                               |     | 8         |
| 119 | Prognostic Significance of Molecular Markers and Extent of Resection in Primary Glioblastoma Patients. Clinical Cancer Research, 2009, 15, 6683-6693.                                                                                                                                       | 7.0 | 180       |
| 120 | Molecular Neuropathology of Gliomas. International Journal of Molecular Sciences, 2009, 10, 184-212.                                                                                                                                                                                        | 4.1 | 42        |
| 121 | Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathologica, 2009, 118, 469-474.                                                                                          | 7.7 | 1,020     |
| 122 | Simultaneous extraction of nucleic acids and proteins from tissue specimens by ultracentrifugation: A protocol using the highâ€salt protein fraction for quantitative proteome analysis. Proteomics, 2009, 9, 4985-4990.                                                                    | 2.2 | 11        |
| 123 | NOA-04 Randomized Phase III Trial of Sequential Radiochemotherapy of Anaplastic Glioma With Procarbazine, Lomustine, and Vincristine or Temozolomide. Journal of Clinical Oncology, 2009, 27, 5874-5880.                                                                                    | 1.6 | 743       |
| 124 | Long-Term Survival of Patients With Glioblastoma Treated With Radiotherapy and Lomustine Plus Temozolomide. Journal of Clinical Oncology, 2009, 27, 1257-1261.                                                                                                                              | 1.6 | 128       |
| 125 | Molecular Predictors of Progression-Free and Overall Survival in Patients With Newly Diagnosed Glioblastoma: A Prospective Translational Study of the German Glioma Network. Journal of Clinical Oncology, 2009, 27, 5743-5750.                                                             | 1.6 | 534       |
| 126 | Novel insights into the pathogenesis of gliomas based on large-scale molecular profiling approaches. Current Opinion in Neurology, 2009, 22, 619-624.                                                                                                                                       | 3.6 | 8         |

| #   | Article                                                                                                                                                                                                                                                | IF  | Citations |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Astrocytic Tumors. Recent Results in Cancer Research, 2009, 171, 3-24.                                                                                                                                                                                 | 1.8 | 21        |
| 128 | Frequent biallelic inactivation and transcriptional silencing of the <i>DIRAS3</i> gene at 1p31 in oligodendroglial tumors with 1p loss. International Journal of Cancer, 2008, 122, 2503-2510.                                                        | 5.1 | 36        |
| 129 | Haplotypeâ€specific expression of the human <i>PDGFRA</i> gene correlates with the risk of glioblastomas. International Journal of Cancer, 2008, 123, 322-329.                                                                                         | 5.1 | 18        |
| 130 | Antiâ€O6â€Methylguanineâ€Methyltransferase (MGMT) Immunohistochemistry in Glioblastoma Multiforme:<br>Observer Variability and Lack of Association with Patient Survival Impede Its Use as Clinical<br>Biomarker*. Brain Pathology, 2008, 18, 520-532. | 4.1 | 189       |
| 131 | Temozolomide Preferentially Depletes Cancer Stem Cells in Glioblastoma. Cancer Research, 2008, 68, 5706-5715.                                                                                                                                          | 0.9 | 269       |
| 132 | BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. Journal of Clinical Investigation, 2008, 118, 1739-1749.                                                                                           | 8.2 | 437       |
| 133 | Long-term survival with glioblastoma multiforme. Brain, 2007, 130, 2596-2606.                                                                                                                                                                          | 7.6 | 748       |
| 134 | Efficacy and Tolerability of Temozolomide in an Alternating Weekly Regimen in Patients With Recurrent Glioma. Journal of Clinical Oncology, 2007, 25, 3357-3361.                                                                                       | 1.6 | 237       |
| 135 | Identification of genomic aberrations associated with shorter overall survival in patients with oligodendroglial tumors. International Journal of Cancer, 2007, 120, 2368-2376.                                                                        | 5.1 | 35        |
| 136 | Intratumoral homogeneity of MGMT promoter hypermethylation as demonstrated in serial stereotactic specimens from anaplastic astrocytomas and glioblastomas. International Journal of Cancer, 2007, 121, 2458-2464.                                     | 5.1 | 140       |
| 137 | DNA hypermethylation and Aberrant Expression of the <i>EMP3</i> Brain Pathology, 2007, 17, 363-370.                                                                                                                                                    | 4.1 | 47        |
| 138 | Loss of NOTCH2 Positively Predicts Survival in Subgroups of Human Glial Brain Tumors. PLoS ONE, 2007, 2, e576.                                                                                                                                         | 2.5 | 60        |
| 139 | Phase II Trial of Lomustine Plus Temozolomide Chemotherapy in Addition to Radiotherapy in Newly<br>Diagnosed Glioblastoma: UKT-03. Journal of Clinical Oncology, 2006, 24, 4412-4417.                                                                  | 1.6 | 152       |
| 140 | Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in $1p36$ and $19q13$ using microarray-based expression profiling. International Journal of Cancer, 2006, $119$ , $792-800$ .                                    | 5.1 | 66        |
| 141 | Identification of novel genes associated with astrocytoma progression using suppression subtractive hybridization and real-time reverse transcription-polymerase chain reaction. International Journal of Cancer, 2006, 119, 2330-2338.                | 5.1 | 58        |
| 142 | Pathology and Classification of Tumors of the Nervous System. , 2006, , 3-72.                                                                                                                                                                          |     | 3         |
| 143 | Genetic alteration and expression of the phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human glioblastomas. Neuropathology and Applied Neurobiology, 2005, 31, 486-490.                                                                | 3.2 | 79        |
| 144 | Frequent promoter hypermethylation and low expression of the <i>MGMT</i> gene in oligodendroglial tumors. International Journal of Cancer, 2005, 113, 379-385.                                                                                         | 5.1 | 246       |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Molecular classification of human gliomas using matrix-based comparative genomic hybridization. International Journal of Cancer, 2005, 117, 95-103.                                                                                                 | 5.1 | 36        |
| 146 | Hypermethylation and Transcriptional Downregulation of the Carboxyl-Terminal Modulator Protein Gene in Glioblastomas. Journal of the National Cancer Institute, 2004, 96, 483-486.                                                                  | 6.3 | 57        |
| 147 | Oligodendroglial Tumors: Refinement of Candidate Regions on Chromosome Arm 1p and Correlation of $1p/19q$ Status with Survival. Brain Pathology, 2004, 14, 121-130.                                                                                 | 4.1 | 148       |
| 148 | Expression of oligodendrocyte lineage genes in oligodendroglial and astrocytic gliomas. Acta Neuropathologica, 2004, 107, 277-282.                                                                                                                  | 7.7 | 59        |
| 149 | Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta<br>Neuropathologica, 2004, 108, 467-470.                                                                                                                | 7.7 | 136       |
| 150 | Pathology and molecular genetics of astrocytic gliomas. Journal of Molecular Medicine, 2004, 82, 656-670.                                                                                                                                           | 3.9 | 147       |
| 151 | Frequent alterations of Ras signaling pathway genes in sporadic malignant melanomas. International Journal of Cancer, 2004, 109, 377-384.                                                                                                           | 5.1 | 133       |
| 152 | Absence of mutations in the putative tumor suppressor geneKLF6in glioblastomas and meningiomas. International Journal of Cancer, 2004, 111, 644-645.                                                                                                | 5.1 | 21        |
| 153 | Absence of detectable alterations in the putative tumor suppressor gene BTRC in cerebellar medulloblastomas and cutaneous basal cell carcinomas. Acta Neuropathologica, 2003, 106, 287-290.                                                         | 7.7 | 13        |
| 154 | Refined mapping of 1q32 amplicons in malignant gliomas confirms <i>MDM4</i> as the main amplification target. International Journal of Cancer, 2003, 104, 752-757.                                                                                  | 5.1 | 85        |
| 155 | Characterization of Gene Expression Profiles Associated with Glioma Progression Using Oligonucleotide-Based Microarray Analysis and Real-Time Reverse Transcription-Polymerase Chain Reaction. American Journal of Pathology, 2003, 163, 1033-1043. | 3.8 | 284       |
| 156 | Oligodendroglioma: Toward Molecular Definitions in Diagnostic Neuro-Oncology. Journal of Neuropathology and Experimental Neurology, 2003, 62, 111-126.                                                                                              | 1.7 | 280       |
| 157 | Genetic Alterations and Aberrant Expression of Genes Related to the Phosphatidylâ€Inositolâ€3â€2â€Kinase/Protein Kinase B (Akt) Signal Transduction Pathway in Glioblastomas. Brain Pathology, 2003, 13, 507-518.                                   | 4.1 | 200       |
| 158 | Genetic Alterations Commonly Found in Diffusely Infiltrating Cerebral Gliomas Are Rare or Absent in Pleomorphic Xanthoastrocytomas. Journal of Neuropathology and Experimental Neurology, 2002, 61, 1092-1099.                                      | 1.7 | 53        |
| 159 | Molecular genetic analysis of malignant melanomas for aberrations of the WNT signaling pathway genesCTNNB1, APC, ICAT andBTRC. International Journal of Cancer, 2002, 100, 549-556.                                                                 | 5.1 | 117       |
| 160 | Comprehensive analysis of genomic alterations in gliosarcoma and its two tissue components. Genes Chromosomes and Cancer, 2002, 34, 416-427.                                                                                                        | 2.8 | 122       |
| 161 | Pten signaling in gliomas. Neuro-Oncology, 2002, 4, 196-211.                                                                                                                                                                                        | 1.2 | 73        |
| 162 | Analysis of human meningiomas for aberrations of the MADH2, MADH4, APM-1 and DCC tumor suppressor genes on the long arm of chromosome 18. International Journal of Cancer, 2001, 92, 551-554.                                                       | 5.1 | 28        |

| #   | Article                                                                                                                                                                                                                                            | IF          | Citations     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| 163 | Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. International Journal of Cancer, 2001, 93, 445-449.                                                                                            | 5.1         | 161           |
|     | Oligodendroglial Tumors Frequently Demonstrate Hypermethylation of the <i>CDKN2A</i> ( <i>MTS1,) Tj ETQq0 C</i>                                                                                                                                    | 0 0 rgBT /0 | Overlock 10 T |
| 164 | and <i>CDKN2B</i> ( <i>MTS2</i> , <i>p15</i> <sup><i>INK4b</i></sup> ) Tumor Suppressor Genes. Journal of Neuropathology and Experimental Neurology, 2001, 60, 1170-1180.                                                                          | 1.7         | 81            |
| 165 | Molecular Genetic Analysis of Ependymal Tumors. American Journal of Pathology, 1999, 155, 627-632.                                                                                                                                                 | 3.8         | 226           |
| 166 | Identification of Two Distinct Deleted Regions on the Short Arm of Chromosome 1 and Rare Mutation of the $<$ i>CDKN2C $<$  i>Gene from 1p32 in Oligodendroglial Tumors. Journal of Neuropathology and Experimental Neurology, 1999, 58, 1041-1050. | 1.7         | 77            |
| 167 | Frequent In activation of <i>CDKN2A</i> and Rare Mutation of <i>TP53</i> in PCNSL. Brain Pathology, 1998, 8, 263-276.                                                                                                                              | 4.1         | 65            |
| 168 | Analysis of p53 Mutation and Epidermal Growth Factor Receptor Amplification in Recurrent Gliomas with Malignant Progression. Journal of Neuropathology and Experimental Neurology, 1996, 55, 822-831.                                              | 1.7         | 142           |
| 169 | MUTATION OF THE VON HIPPEL-LINDAU TUMOUR SUPPRESSOR GENE IN CAPILLARY HAEMANGIOBLASTOMAS OF THE CENTRAL NERVOUS SYSTEM. , 1996, 179, 151-156.                                                                                                      |             | 65            |