
Like Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3074439/publications.pdf Version: 2024-02-01

LIKE MAO

#	Article	IF	CITATIONS
1	The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science and Technology, 2016, 56, 21-38.	7.8	505
2	Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International, 2008, 41, 61-68.	2.9	434
3	Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles. Food Hydrocolloids, 2018, 74, 239-248.	5.6	295
4	Fabrication of zein and rhamnolipid complex nanoparticles to enhance the stability and inÂvitro release of curcumin. Food Hydrocolloids, 2018, 77, 617-628.	5.6	207
5	Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion. Food Hydrocolloids, 2020, 99, 105334.	5.6	190
6	Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chemistry, 2017, 237, 1163-1171.	4.2	177
7	Optimisation of conditions for the preparation of β-carotene nanoemulsions using response surface methodology. Food Chemistry, 2008, 107, 1300-1306.	4.2	154
8	Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin. Food Hydrocolloids, 2018, 85, 75-85.	5.6	152
9	Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion. Food Hydrocolloids, 2019, 95, 336-348.	5.6	148
10	Fabrication and Characterization of Layer-by-Layer Composite Nanoparticles Based on Zein and Hyaluronic Acid for Codelivery of Curcumin and Quercetagetin. ACS Applied Materials & Interfaces, 2019, 11, 16922-16933.	4.0	138
11	Development of stable high internal phase emulsions by pickering stabilization: Utilization of zein-propylene glycol alginate-rhamnolipid complex particles as colloidal emulsifiers. Food Chemistry, 2019, 275, 246-254.	4.2	136
12	Structuring Food Emulsions to Improve Nutrient Delivery During Digestion. Food Engineering Reviews, 2015, 7, 439-451.	3.1	131
13	Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Food Chemistry, 2017, 228, 656-667.	4.2	125
14	Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocolloids, 2020, 105, 105855.	5.6	121
15	Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Critical Reviews in Food Science and Nutrition, 2020, 60, 1651-1666.	5.4	113
16	Composite zein - propylene glycol alginate particles prepared using solvent evaporation: Characterization and application as Pickering emulsion stabilizers. Food Hydrocolloids, 2018, 85, 281-290.	5.6	112
17	Development of Emulsion Gels for the Delivery of Functional Food Ingredients: from Structure to Functionality. Food Engineering Reviews, 2019, 11, 245-258.	3.1	105
18	Zein-hyaluronic acid binary complex as a delivery vehicle of quercetagetin: Fabrication, structural characterization, physicochemical stability and in vitro release property. Food Chemistry, 2019, 276, 322-332.	4.2	103

Like Mao

#	Article	IF	CITATIONS
19	Effects of Homogenization Models and Emulsifiers on the Physicochemical Properties of β-Carotene Nanoemulsions. Journal of Dispersion Science and Technology, 2010, 31, 986-993.	1.3	99
20	The stabilization and release performances of curcumin-loaded liposomes coated by high and low molecular weight chitosan. Food Hydrocolloids, 2020, 99, 105355.	5.6	99
21	Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Carbohydrate Polymers, 2018, 201, 599-607.	5.1	97
22	Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and β-carotene bioaccessibility of Pickering emulsions. Food Hydrocolloids, 2020, 104, 105738.	5.6	96
23	Food emulsions as delivery systems for flavor compounds: A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 3173-3187.	5.4	92
24	Core–Shell Biopolymer Nanoparticles for Co-Delivery of Curcumin and Piperine: Sequential Electrostatic Deposition of Hyaluronic Acid and Chitosan Shells on the Zein Core. ACS Applied Materials & Interfaces, 2019, 11, 38103-38115.	4.0	92
25	Effect of β-sitosterol on the curcumin-loaded liposomes: Vesicle characteristics, physicochemical stability, in vitro release and bioavailability. Food Chemistry, 2019, 293, 92-102.	4.2	92
26	Emulsion design for the delivery of β-carotene in complex food systems. Critical Reviews in Food Science and Nutrition, 2018, 58, 770-784.	5.4	85
27	Study on the Rheological Properties and Volatile Release of Cold-Set Emulsion-Filled Protein Gels. Journal of Agricultural and Food Chemistry, 2014, 62, 11420-11428.	2.4	84
28	Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chemistry, 2020, 326, 126973.	4.2	83
29	Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan: Fabrication, characterization and encapsulation. Food Hydrocolloids, 2020, 108, 105992.	5.6	82
30	The effect of sterol derivatives on properties of soybean and egg yolk lecithin liposomes: Stability, structure and membrane characteristics. Food Research International, 2018, 109, 24-34.	2.9	75
31	Production and characterization of pea protein isolate-pectin complexes for delivery of curcumin: Effect of esterified degree of pectin. Food Hydrocolloids, 2020, 105, 105777.	5.6	73
32	Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis. Journal of Colloid and Interface Science, 2020, 563, 291-307.	5.0	72
33	Characterization of β-carotene loaded emulsion gels containing denatured and native whey protein. Food Hydrocolloids, 2020, 102, 105600.	5.6	71
34	Co-encapsulation of curcumin and β-carotene in Pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocolloids, 2022, 122, 107064.	5.6	70
35	Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Research International, 2018, 103, 1-7.	2.9	68
36	Characterization and antioxidant properties of chitosan film incorporated with modified silica nanoparticles as an active food packaging. Food Chemistry, 2022, 373, 131414.	4.2	68

#	Article	IF	CITATIONS
37	Development of soy protein isolate-carrageenan conjugates through Maillard reaction for the microencapsulation of Bifidobacterium longum. Food Hydrocolloids, 2018, 84, 489-497.	5.6	65
38	Stabilization and Rheology of Concentrated Emulsions Using the Natural Emulsifiers Quillaja Saponins and Rhamnolipids. Journal of Agricultural and Food Chemistry, 2018, 66, 3922-3929.	2.4	64
39	Fabrication, characterization and in vitro digestion of food grade complex nanoparticles for co-delivery of resveratrol and coenzyme Q10. Food Hydrocolloids, 2020, 105, 105791.	5.6	63
40	Enhanced stability, structural characterization and simulated gastrointestinal digestion of coenzyme Q10 loaded ternary nanoparticles. Food Hydrocolloids, 2019, 94, 333-344.	5.6	59
41	Emulsion gels with different proteins at the interface: Structures and delivery functionality. Food Hydrocolloids, 2021, 116, 106637.	5.6	59
42	Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate, Part 1: Fabrication and Characterization. Journal of Agricultural and Food Chemistry, 2019, 67, 1197-1208.	2.4	58
43	Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate. 2. Influence of Environmental Stresses on Stability and Rheological Properties. Journal of Agricultural and Food Chemistry, 2019, 67, 1209-1221.	2.4	56
44	Roles of additional emulsifiers in the structures of emulsion gels and stability of vitamin E. Food Hydrocolloids, 2020, 99, 105372.	5.6	56
45	Monoglyceride self-assembled structure in O/W emulsion: formation, characterization and its effect on emulsion properties. Food Research International, 2014, 58, 81-88.	2.9	55
46	Characterization of chitosan-ferulic acid conjugates and their application in the design of β-carotene bilayer emulsions with propylene glycol alginate. Food Hydrocolloids, 2018, 80, 281-291.	5.6	55
47	Influence of calcium ions on the stability, microstructure and in vitro digestion fate of zein-propylene glycol alginate-tea saponin ternary complex particles for the delivery of resveratrol. Food Hydrocolloids, 2020, 106, 105886.	5.6	55
48	Fabrication and characterization of curcumin-loaded pea protein isolate-surfactant complexes at neutral pH. Food Hydrocolloids, 2021, 111, 106214.	5.6	55
49	Effects of calcium chelating agents on the solubility of milk protein concentrate. International Journal of Dairy Technology, 2017, 70, 415-423.	1.3	54
50	Curcumin-loaded pea protein isolate-high methoxyl pectin complexes induced by calcium ions: Characterization, stability and in vitro digestibility. Food Hydrocolloids, 2020, 98, 105284.	5.6	54
51	High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: enhanced survivability and controlled release. Food and Function, 2021, 12, 70-82.	2.1	53
52	Novel γ-cyclodextrin-metal–organic frameworks for encapsulation of curcumin with improved loading capacity, physicochemical stability and controlled release properties. Food Chemistry, 2021, 347, 128978.	4.2	53
53	Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type. Food Chemistry, 2018, 258, 321-330.	4.2	52
54	Novel high internal phase emulsions with gelled oil phase: Preparation, characterization and stability evaluation. Food Hydrocolloids, 2021, 121, 106995.	5.6	52

#	Article	IF	CITATIONS
55	Ethanol-induced composite hydrogel based on propylene glycol alginate and zein: Formation, characterization and application. Food Chemistry, 2018, 255, 390-398.	4.2	50
56	Utilization of β-lactoglobulin- (â^')-Epigallocatechin- 3-gallate(EGCG) composite colloidal nanoparticles as stabilizers for lutein pickering emulsion. Food Hydrocolloids, 2020, 98, 105293.	5.6	49
57	Fabrication and characterization of binary composite nanoparticles between zein and shellac by anti-solvent co-precipitation. Food and Bioproducts Processing, 2018, 107, 88-96.	1.8	48
58	Formation of soy protein isolate-carrageenan complex coacervates for improved viability of Bifidobacterium longum during pasteurization and in vitro digestion. Food Chemistry, 2019, 276, 307-314.	4.2	48
59	Characterization and formation mechanism of lutein pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles. Food Hydrocolloids, 2020, 98, 105276.	5.6	48
60	Evaluation of non-covalent ternary aggregates of lactoferrin, high methylated pectin, EGCG in stabilizing β-carotene emulsions. Food Chemistry, 2018, 240, 1063-1071.	4.2	47
61	Structural design of zein-cellulose nanocrystals core–shell microparticles for delivery of curcumin. Food Chemistry, 2021, 357, 129849.	4.2	47
62	Surfactant addition to modify the structures of ethylcellulose oleogels for higher solubility and stability of curcumin. International Journal of Biological Macromolecules, 2020, 165, 2286-2294.	3.6	45
63	Electrostatic deposition of polysaccharide onto soft protein colloidal particles: Enhanced rigidity and potential application as Pickering emulsifiers. Food Hydrocolloids, 2021, 110, 106147.	5.6	45
64	Tuning the rheological and tribological properties to simulate oral processing of novel high internal phase oleogel-in-water emulsions. Food Hydrocolloids, 2022, 131, 107757.	5.6	44
65	Effect of monoglyceride content on the solubility and chemical stability of β-carotene in organogels. LWT - Food Science and Technology, 2019, 106, 83-91.	2.5	42
66	Stability, Interfacial Structure, and Gastrointestinal Digestion of β-Carotene-Loaded Pickering Emulsions Co-stabilized by Particles, a Biopolymer, and a Surfactant. Journal of Agricultural and Food Chemistry, 2021, 69, 1619-1636.	2.4	42
67	Fabrication, Physicochemical Stability, and Microstructure of Coenzyme Q10 Pickering Emulsions Stabilized by Resveratrol-Loaded Composite Nanoparticles. Journal of Agricultural and Food Chemistry, 2020, 68, 1405-1418.	2.4	41
68	Assembly of propylene glycol alginate/β-lactoglobulin composite hydrogels induced by ethanol for co-delivery of probiotics and curcumin. Carbohydrate Polymers, 2021, 254, 117446.	5.1	41
69	Effect of maltodextrins on the stability and release of volatile compounds of oil-in-water emulsions subjected to freeze–thaw treatment. Food Hydrocolloids, 2015, 50, 219-227.	5.6	39
70	Effect of the Solid Fat Content on Properties of Emulsion Gels and Stability of β-Carotene. Journal of Agricultural and Food Chemistry, 2019, 67, 6466-6475.	2.4	39
71	Impact of microfluidization and thermal treatment on the structure, stability and in vitro digestion of curcumin loaded zein-propylene glycol alginate complex nanoparticles. Food Research International, 2020, 138, 109817.	2.9	39
72	Impact of different crosslinking agents on functional properties of curcumin-loaded gliadin-chitosan composite nanoparticles. Food Hydrocolloids, 2021, 112, 106258.	5.6	38

#	Article	IF	CITATIONS
73	Volatile Release from Whey Protein Isolate–Pectin Multilayer Stabilized Emulsions: Effect of pH, Salt, and Artificial Salivas. Journal of Agricultural and Food Chemistry, 2013, 61, 6231-6239.	2.4	37
74	Formation mechanism and environmental stability of whey protein isolate-zein core-shell complex nanoparticles using the pH-shifting method. LWT - Food Science and Technology, 2021, 139, 110605.	2.5	37
75	Cyclodextrin-based metal–organic framework nanoparticles as superior carriers for curcumin: Study of encapsulation mechanism, solubility, release kinetics, and antioxidative stability. Food Chemistry, 2022, 383, 132605.	4.2	37
76	Zein Colloidal Particles and Cellulose Nanocrystals Synergistic Stabilization of Pickering Emulsions for Delivery of β-Carotene. Journal of Agricultural and Food Chemistry, 2021, 69, 12278-12294.	2.4	36
77	Effect of sodium tripolyphosphate incorporation on physical, structural, morphological and stability characteristics of zein and gliadin nanoparticles. International Journal of Biological Macromolecules, 2019, 136, 653-660.	3.6	35
78	Effect of monoglyceride self-assembled structure on emulsion properties and subsequent flavor release. Food Research International, 2012, 48, 233-240.	2.9	34
79	The construction of resveratrol-loaded protein–polysaccharide–tea saponin complex nanoparticles for controlling physicochemical stability and <i>in vitro</i> digestion. Food and Function, 2020, 11, 9973-9983.	2.1	33
80	Evaluation of volatile characteristics in whey protein isolate–pectin mixed layer emulsions under different environmental conditions. Food Hydrocolloids, 2014, 41, 79-85.	5.6	31
81	Effect of gum arabic on the storage stability and antibacterial ability of β-lactoglobulin stabilized d-limonene emulsion. Food Hydrocolloids, 2018, 84, 75-83.	5.6	31
82	Fabrication, structural characterization and functional attributes of polysaccharide-surfactant-protein ternary complexes for delivery of curcumin. Food Chemistry, 2021, 337, 128019.	4.2	31
83	Fabrication of multilayer structural microparticles for co-encapsulating coenzyme Q10 and piperine: Effect of the encapsulation location and interface thickness. Food Hydrocolloids, 2020, 109, 106090.	5.6	30
84	Development of high methoxyl pectin-surfactant-pea protein isolate ternary complexes: Fabrication, characterization and delivery of resveratrol. Food Chemistry, 2020, 321, 126706.	4.2	30
85	Characterization of β-lactoglobulin gels induced by high pressure processing. Innovative Food Science and Emerging Technologies, 2018, 47, 335-345.	2.7	29
86	Preparation, characterization and stability of pea protein isolate and propylene glycol alginate soluble complexes. LWT - Food Science and Technology, 2019, 101, 476-482.	2.5	28
87	Effect of Oil Content and Emulsifier Type on the Properties and Antioxidant Activity of Sea Buckthorn Oil-in-Water Emulsions. Journal of Food Quality, 2020, 2020, 1-8.	1.4	28
88	Effects of microfluidization and thermal treatment on the characterization and digestion of curcumin loaded protein–polysaccharide–tea saponin complex nanoparticles. Food and Function, 2021, 12, 1192-1206.	2.1	27
89	Development of a soy protein isolate–carrageenan–quercetagetin non-covalent complex for the stabilization of β-carotene emulsions. Food and Function, 2017, 8, 4356-4363.	2.1	26
90	Effect of interfacial compositions on the physical properties of alginate-based emulsion gels and chemical stability of co-encapsulated bioactives. Food Hydrocolloids, 2021, 111, 106389.	5.6	26

#	Article	IF	CITATIONS
91	Structural characterization of hydrogel-oleogel biphasic systems as affected by oleogelators. Food Research International, 2022, 158, 111536.	2.9	25
92	Physical properties and salt release of potato starch-based emulsion gels with OSA starch-stabilized oil droplets. LWT - Food Science and Technology, 2021, 141, 110929.	2.5	24
93	Volatile Release from Self-Assembly Structured Emulsions: Effect of Monoglyceride Content, Oil Content, and Oil Type. Journal of Agricultural and Food Chemistry, 2013, 61, 1427-1434.	2.4	23
94	Effect of dynamic high pressure microfluidization treatment on physical stability, microstructure and carotenoids release of sea buckthorn juice. LWT - Food Science and Technology, 2021, 135, 110277.	2.5	22
95	W/O emulsions featuring ethylcellulose structuring in the water phase, interface and oil phase for multiple delivery. Carbohydrate Polymers, 2022, 283, 119158.	5.1	21
96	Facile synthesis of zein-based emulsion gels with adjustable texture, rheology and stability by adding β-carotene in different phases. Food Hydrocolloids, 2022, 124, 107178.	5.6	20
97	Physicochemical stability of oleogel-in-water emulsions loaded with β-carotene against environmental stresses. LWT - Food Science and Technology, 2022, 155, 112965.	2.5	20
98	Modification of the structural and rheological properties of β-lactoglobulin/κ-carrageenan mixed gels induced by high pressure processing. Journal of Food Engineering, 2020, 274, 109851.	2.7	18
99	Structural Modification of O/W Bigels by Glycerol Monostearate for Improved Co-Delivery of Curcumin and Epigallocatechin Gallate. ACS Food Science & Technology, 2022, 2, 975-983.	1.3	15
100	Interfacial properties and antioxidant capacity of pickering emulsions stabilized by high methoxyl pectin-surfactant-pea protein isolate-curcumin complexes: Impact of different types of surfactants. LWT - Food Science and Technology, 2022, 153, 112453.	2.5	14
101	Influence of thermal treatment on physical, structural characteristics and stability of lactoferrin, EGCG and high methoxylated pectin aggregates. LWT - Food Science and Technology, 2020, 125, 109221.	2.5	13
102	Enhanced Physicochemical Stability of β-Carotene Emulsions Stabilized by β-Lactoglobulinâ^'Ferulic Acidâ^'Chitosan Ternary Conjugate. Journal of Agricultural and Food Chemistry, 2020, 68, 8404-8412.	2.4	12
103	Development of curcumin loaded core–shell zein microparticles stabilized by cellulose nanocrystals and whey protein microgels through interparticle interactions. Food and Function, 2021, 12, 6936-6949.	2.1	12
104	Development of β-carotene loaded oil-in-water emulsions using mixed biopolymer–particle–surfactant interfaces. Food and Function, 2021, 12, 3246-3265.	2.1	11
105	Enhanced stability and controlled gastrointestinal digestion of β-carotene loaded Pickering emulsions with particle–particle complex interfaces. Food and Function, 2021, 12, 10842-10861.	2.1	11
106	Effect of Ultra-high temperature processing on the physicochemical properties and antibacterial activity of d-limonene emulsions stabilized by β-lactoglobulin/Gum arabic bilayer membranes. Food Chemistry, 2020, 332, 127391.	4.2	8
107	Flavour Release from Monoglyceride Structured Oil-in-Water Emulsions through Static Headspace Analysis. Food Biophysics, 2014, 9, 359-367.	1.4	7
108	Superfruits in China: Bioactive phytochemicals and their potential health benefits – A Review. Food Science and Nutrition, 2021, 9, 6892-6902.	1.5	5