Wonpil Im

List of Publications by Citations

Source: https://exaly.com/author-pdf/307355/wonpil-im-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

204 papers **16,5**08 citations

55 h-index 126 g-index

226 ext. papers

21,546 ext. citations

4.8 avg, IF

6.88 L-index

#	Paper	IF	Citations
204	CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 405-13	6.4	1303
203	CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>Journal of Computational Chemistry</i> , 2014 , 35, 1997-2004	3.5	1004
202	CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. <i>Biophysical Journal</i> , 2009 , 97, 50-8	2.9	891
201	Automated builder and database of protein/membrane complexes for molecular dynamics simulations. <i>PLoS ONE</i> , 2007 , 2, e880	3.7	616
200	Generalized born model with a simple smoothing function. <i>Journal of Computational Chemistry</i> , 2003 , 24, 1691-702	3.5	578
199	Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. <i>Journal of Computational Chemistry</i> , 2004 , 25, 265-84	3.5	465
198	Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. <i>Computer Physics Communications</i> , 1998 , 111, 59-75	4.2	459
197	An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. <i>Biophysical Journal</i> , 2003 , 85, 2900-18	2.9	346
196	Theoretical and computational models of biological ion channels. <i>Quarterly Reviews of Biophysics</i> , 2004 , 37, 15-103	7	321
195	Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. <i>Journal of Molecular Biology</i> , 2002 , 322, 851-69	6.5	312
194	Balancing solvation and intramolecular interactions: toward a consistent generalized Born force field. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3728-36	16.4	2 90
193	Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. <i>Journal of Molecular Biology</i> , 2002 , 319, 1177-97	6.5	230
192	Generalized solvent boundary potential for computer simulations. <i>Journal of Chemical Physics</i> , 2001 , 114, 2924-2937	3.9	206
191	A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. <i>Biophysical Journal</i> , 2000 , 79, 788-801	2.9	192
190	CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 4486-94	6.4	181
189	PBEQ-Solver for online visualization of electrostatic potential of biomolecules. <i>Nucleic Acids Research</i> , 2008 , 36, W270-5	20.1	163
188	Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. <i>Biophysical Journal</i> , 2004 , 87, 2299-309	2.9	163

(2016-2000)

187	Ion channels, permeation, and electrostatics: insight into the function of KcsA. <i>Biochemistry</i> , 2000 , 39, 13295-306	3.2	158
186	Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 6771-6	11.5	157
185	CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 775-786	6.4	152
184	Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane. Journal of Physical Chemistry B, 2020 , 124, 7128-7137	3.4	131
183	Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. <i>Biophysical Journal</i> , 2013 , 105, 1444-55	2.9	125
182	Implicit solvation based on generalized Born theory in different dielectric environments. <i>Journal of Chemical Physics</i> , 2004 , 120, 903-11	3.9	124
181	Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. <i>Scientific Reports</i> , 2015 , 5, 8926	4.9	122
180	CHARMM-GUI 10 years for biomolecular modeling and simulation. <i>Journal of Computational Chemistry</i> , 2017 , 38, 1114-1124	3.5	119
179	Glycan Reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins. <i>Journal of Computational Chemistry</i> , 2011 , 32, 3135-41	3.5	118
178	Novel pyrrolopyrimidine-based Helix mimetics: cell-permeable inhibitors of protein protein interactions. <i>Journal of the American Chemical Society</i> , 2011 , 133, 676-9	16.4	110
177	Improving the CHARMM force field for polyunsaturated fatty acid chains. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 9424-31	3.4	102
176	CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. <i>Glycobiology</i> , 2019 , 29, 320-331	5.8	101
175	E. coli outer membrane and interactions with OmpLA. <i>Biophysical Journal</i> , 2014 , 106, 2493-502	2.9	97
174	Cholesterol flip-flop: insights from free energy simulation studies. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 13342-8	3.4	97
173	CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. <i>Advances in Protein Chemistry and Structural Biology</i> , 2014 , 96, 235-65	5.3	96
172	Optimized atomic radii for protein continuum electrostatics solvation forces. <i>Biophysical Chemistry</i> , 1999 , 78, 89-96	3.5	94
171	Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation. <i>Biophysical Journal</i> , 2010 , 99, 175-83	2.9	91
170	Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2016 , 1858, 1635-51	3.8	88

169	Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin. <i>Biophysical Journal</i> , 2002 , 82, 1667-76	2.9	79
168	Influence of hydrophobic mismatch on structures and dynamics of gramicidin a and lipid bilayers. <i>Biophysical Journal</i> , 2012 , 102, 1551-60	2.9	78
167	Membrane assembly of simple helix homo-oligomers studied via molecular dynamics simulations. <i>Biophysical Journal</i> , 2007 , 92, 854-63	2.9	74
166	Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2020 , 60, 2189-2198	6.1	69
165	Molecular dynamics studies of ion permeation in VDAC. <i>Biophysical Journal</i> , 2011 , 100, 602-610	2.9	68
164	A systematic molecular dynamics simulation study of temperature dependent bilayer structural properties. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2014 , 1838, 2520-9	3.8	63
163	Application of torsion angle molecular dynamics for efficient sampling of protein conformations. Journal of Computational Chemistry, 2005 , 26, 1565-78	3.5	63
162	CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems. <i>Journal of Chemical Information and Modeling</i> , 2013 , 53, 2171-80	6.1	61
161	CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model. <i>Biophysical Journal</i> , 2015 , 109, 2012-22	2.9	60
160	Bilayer Properties of Lipid A from Various Gram-Negative Bacteria. <i>Biophysical Journal</i> , 2016 , 111, 1750	-1760	60
159	Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank. <i>Bioinformatics</i> , 2017 , 33, 3051-3057	7.2	59
158	Structural, NMR spectroscopic, and computational investigation of hemin loading in the hemophore HasAp from Pseudomonas aeruginosa. <i>Journal of the American Chemical Society</i> , 2010 , 132, 9857-72	16.4	58
157	De novo folding of membrane proteins: an exploration of the structure and NMR properties of the fd coat protein. <i>Journal of Molecular Biology</i> , 2004 , 337, 513-9	6.5	58
156	Peptide and protein folding and conformational equilibria: theoretical treatment of electrostatics and hydrogen bonding with implicit solvent models. <i>Advances in Protein Chemistry</i> , 2005 , 72, 173-98		58
155	Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry. <i>Journal of Chemical Physics</i> , 2001 , 115, 4850-4861	3.9	58
154	Transmembrane helix tilting: insights from calculating the potential of mean force. <i>Physical Review Letters</i> , 2008 , 100, 018103	7.4	56
153	Differences in the electrostatic surfaces of the type III secretion needle proteins PrgI, BsaL, and MxiH. <i>Journal of Molecular Biology</i> , 2007 , 371, 1304-14	6.5	55
	MXIII. Journal of Molecular Biology, 2007 , 371, 1304-14		

(2002-2004)

151	Refinement of NMR structures using implicit solvent and advanced sampling techniques. <i>Journal of the American Chemical Society</i> , 2004 , 126, 16038-47	16.4	53
150	BamA POTRA Domain Interacts with a Native Lipid Membrane Surface. <i>Biophysical Journal</i> , 2016 , 110, 2698-2709	2.9	52
149	Potential pharmacological chaperones targeting cancer-associated MCL-1 and Parkinson disease-associated Bynuclein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 11007-12	11.5	51
148	CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application. <i>Journal of Chemical Information and Modeling</i> , 2013 , 53, 267-77	6.1	51
147	Transmembrane helix assembly by window exchange umbrella sampling. <i>Physical Review Letters</i> , 2012 , 108, 108102	7.4	51
146	Brownian dynamics simulations of ion transport through the VDAC. <i>Biophysical Journal</i> , 2011 , 100, 611-	-621.9	49
145	Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection. <i>Journal of Immunological Methods</i> , 2008 , 331, 27-38	2.5	48
144	L-Met Activates Arabidopsis GLR Ca Channels Upstream of ROS Production and Regulates Stomatal Movement. <i>Cell Reports</i> , 2016 , 17, 2553-2561	10.6	45
143	How Tolerant are Membrane Simulations with Mismatch in Area per Lipid between Leaflets?. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 3466-77	6.4	44
142	Glycan fragment database: a database of PDB-based glycan 3D structures. <i>Nucleic Acids Research</i> , 2013 , 41, D470-4	20.1	41
141	Web interface for Brownian dynamics simulation of ion transport and its applications to beta-barrel pores. <i>Journal of Computational Chemistry</i> , 2012 , 33, 331-9	3.5	38
140	Role of hydrogen bonding and helix-lipid interactions in transmembrane helix association. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6456-62	16.4	37
139	Influence of Cholesterol on Phospholipid Bilayer Structure and Dynamics. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 11761-11772	3.4	36
138	Challenges in structural approaches to cell modeling. <i>Journal of Molecular Biology</i> , 2016 , 428, 2943-64	6.5	36
137	CHARMM-GUI supports the Amber force fields. <i>Journal of Chemical Physics</i> , 2020 , 153, 035103	3.9	36
136	Generation of native-like protein structures from limited NMR data, modern force fields and advanced conformational sampling. <i>Journal of Biomolecular NMR</i> , 2005 , 31, 59-64	3	35
135	Implementation and application of helix-helix distance and crossing angle restraint potentials. Journal of Computational Chemistry, 2007 , 28, 669-80	3.5	34
134	Electrostatic free energy calculations using the generalized solvent boundary potential method. Journal of Chemical Physics, 2002, 117, 7381-7388	3.9	34

133	CHARMM-GUI PACE CG Builder for solution, micelle, and bilayer coarse-grained simulations. <i>Journal of Chemical Information and Modeling</i> , 2014 , 54, 1003-9	6.1	33
132	Two Dimensional Window Exchange Umbrella Sampling for Transmembrane Helix Assembly. Journal of Chemical Theory and Computation, 2013 , 9, 13-17	6.4	33
131	Refinement of OprH-LPS Interactions by Molecular Simulations. <i>Biophysical Journal</i> , 2017 , 112, 346-355	2.9	32
130	An extensive simulation study of lipid bilayer properties with different head groups, acyl chain lengths, and chain saturations. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2016 , 1858, 3093-3104	3.8	32
129	Transmembrane signaling of chemotaxis receptor tar: insights from molecular dynamics simulation studies. <i>Biophysical Journal</i> , 2011 , 100, 2955-63	2.9	32
128	Gramicidin A Channel Formation Induces Local Lipid Redistribution I: Experiment and Simulation. <i>Biophysical Journal</i> , 2017 , 112, 1185-1197	2.9	31
127	Restraint potential and free energy decomposition formalism for helical tilting. <i>Chemical Physics Letters</i> , 2007 , 441, 132-135	2.5	31
126	Lipopolysaccharide membrane building and simulation. <i>Methods in Molecular Biology</i> , 2015 , 1273, 391-4	0164	31
125	The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport. <i>Structure</i> , 2016 , 24, 956-64	5.2	31
124	Modeling and simulation of bacterial outer membranes and interactions with membrane proteins. <i>Current Opinion in Structural Biology</i> , 2017 , 43, 131-140	8.1	30
123	A conserved Etransmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E6649-E6658	11.5	30
122	Influence of Ganglioside GM1 Concentration on Lipid Clustering and Membrane Properties and Curvature. <i>Biophysical Journal</i> , 2016 , 111, 1987-1999	2.9	29
121	Probing the U-shaped conformation of caveolin-1 in a bilayer. <i>Biophysical Journal</i> , 2014 , 106, 1371-80	2.9	28
120	Transmembrane helix orientation and dynamics: insights from ensemble dynamics with solid-state NMR observables. <i>Biophysical Journal</i> , 2011 , 100, 2913-21	2.9	28
119	Application of solid-state NMR restraint potentials in membrane protein modeling. <i>Journal of Magnetic Resonance</i> , 2008 , 193, 68-76	3	28
118	CHARMM-GUI Free Energy Calculator for Absolute and Relative Ligand Solvation and Binding Free Energy Simulations. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 7207-7218	6.4	28
117	CHARMM-GUI Nanodisc Builder for modeling and simulation of various nanodisc systems. <i>Journal of Computational Chemistry</i> , 2019 , 40, 893-899	3.5	27
116	Application of binding free energy calculations to prediction of binding modes and affinities of MDM2 and MDMX inhibitors. <i>Journal of Chemical Information and Modeling</i> , 2012 , 52, 1821-32	6.1	27

115	Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins. <i>Glycobiology</i> , 2016 , 26, 19-29	5.8	26
114	Multidimensional umbrella sampling and replica-exchange molecular dynamics simulations for structure prediction of transmembrane helix dimers. <i>Journal of Computational Chemistry</i> , 2014 , 35, 300-	- 8 ·5	26
113	Protein-protein interactions in actin-myosin binding and structural effects of R405Q mutation: a molecular dynamics study. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 64, 156-66	4.2	26
112	Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. <i>Biophysical Journal</i> , 2021 , 120, 1011-1019	2.9	26
111	Structure, Dynamics, Receptor Binding, and Antibody Binding of the Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein in a Viral Membrane. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 2479-2487	6.4	26
110	Orientation of fluorescent lipid analogue BODIPY-PC to probe lipid membrane properties: insights from molecular dynamics simulations. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 6157-65	3.4	24
109	Identification of ligand templates using local structure alignment for structure-based drug design. Journal of Chemical Information and Modeling, 2012 , 52, 2784-95	6.1	23
108	NMR observable-based structure refinement of DAP12-NKG2C activating immunoreceptor complex in explicit membranes. <i>Biophysical Journal</i> , 2012 , 102, L27-9	2.9	23
107	Molecular Simulations of Gram-Negative Bacterial Membranes Come of Age. <i>Annual Review of Physical Chemistry</i> , 2020 , 71, 171-188	15.7	22
106	Unfolding of a ClC chloride transporter retains memory of its evolutionary history. <i>Nature Chemical Biology</i> , 2018 , 14, 489-496	11.7	22
105	Restricted N-glycan conformational space in the PDB and its implication in glycan structure modeling. <i>PLoS Computational Biology</i> , 2013 , 9, e1002946	5	22
104	Preferred orientations of phosphoinositides in bilayers and their implications in protein recognition mechanisms. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 4315-25	3.4	21
103	CHARMM-GUI Input Generator for NAMD, Gromacs, Amber, Openmm, and CHARMM/OpenMM Simulations using the CHARMM36 Additive Force Field. <i>Biophysical Journal</i> , 2016 , 110, 641a	2.9	21
102	Clustering and dynamics of crowded proteins near membranes and their influence on membrane bending. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 245	5 62-2 4	5 67
101	Biophysical and functional characterization of Norrin signaling through Frizzled4. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8787-8792	11.5	20
100	Transmembrane features governing Fc receptor CD16A assembly with CD16A signaling adaptor molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E5645-E5654	11.5	20
99	Differential Interactions between Human ACE2 and Spike RBD of SARS-CoV-2 Variants of Concern. Journal of Chemical Theory and Computation, 2021 ,	6.4	20
98	Effects of N-Glycan Composition on Structure and Dynamics of IgG1 Fc and Their Implications for Antibody Engineering. <i>Scientific Reports</i> , 2017 , 7, 12659	4.9	19

97	G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design. <i>Protein Science</i> , 2016 , 25, 865-76	6.3	19
96	Novel free energy calculations to explore mechanisms and energetics of membrane protein structure and function. <i>Journal of Computational Chemistry</i> , 2009 , 30, 1622-33	3.5	19
95	Molecular dynamics studies on structure and dynamics of phospholamban monomer and pentamer in membranes. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 76, 86-98	4.2	19
94	Protegrin-1 orientation and physicochemical properties in membrane bilayers studied by potential of mean force calculations. <i>Journal of Computational Chemistry</i> , 2010 , 31, 2859-67	3.5	19
93	Transmembrane Complexes of DAP12 Crystallized in Lipid Membranes Provide Insights into Control of Oligomerization in Immunoreceptor Assembly. <i>Cell Reports</i> , 2015 , 11, 1184-92	10.6	18
92	NMR-based simulation studies of Pf1 coat protein in explicit membranes. <i>Biophysical Journal</i> , 2013 , 105, 691-8	2.9	18
91	Comparative molecular dynamics simulation studies of protegrin-1 monomer and dimer in two different lipid bilayers. <i>Biophysical Journal</i> , 2009 , 97, 787-95	2.9	18
90	Lipid-linked oligosaccharides in membranes sample conformations that facilitate binding to oligosaccharyltransferase. <i>Biophysical Journal</i> , 2014 , 107, 1885-1895	2.9	17
89	Ligand binding site detection by local structure alignment and its performance complementarity. Journal of Chemical Information and Modeling, 2013 , 53, 2462-70	6.1	17
88	Solid-state NMR ensemble dynamics as a mediator between experiment and simulation. <i>Biophysical Journal</i> , 2011 , 100, 2922-8	2.9	17
87	Conformational Dynamics of the Lipopolysaccharide from Escherichia coli O91 Revealed by Nuclear Magnetic Resonance Spectroscopy and Molecular Simulations. <i>Biochemistry</i> , 2017 , 56, 3826-3839	3.2	16
86	Physical Properties of Bacterial Outer Membrane Models: Neutron Reflectometry & Molecular Simulation. <i>Biophysical Journal</i> , 2019 , 116, 1095-1104	2.9	16
85	Theory of Adaptive Optimization for Umbrella Sampling. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 2719-2728	6.4	16
84	Assessing smectic liquid-crystal continuum models for elastic bilayer deformations. <i>Chemistry and Physics of Lipids</i> , 2013 , 169, 19-26	3.7	16
83	A repulsive electrostatic mechanism for protein export through the type III secretion apparatus. <i>Biophysical Journal</i> , 2010 , 98, 452-61	2.9	16
82	Differential Interactions Between Human ACE2 and Spike RBD of SARS-CoV-2 Variants of Concern 2021 ,		16
81	Gramicidin A Channel Formation Induces Local Lipid Redistribution II: A 3D Continuum Elastic Model. <i>Biophysical Journal</i> , 2017 , 112, 1198-1213	2.9	15
80	Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein. <i>Biophysical Journal</i> , 2015 , 109, 2090-100	2.9	14

(2020-2016)

79	Molecular dynamics simulation strategies for protein-micelle complexes. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2016 , 1858, 1566-72	3.8	14
78	Membrane tension, lipid adaptation, conformational changes, and energetics in MscL gating. <i>Biophysical Journal</i> , 2011 , 101, 671-9	2.9	14
77	Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chemical Biology, 2018, 25, 1185	5-81294.	.e 5 4
76	CHARMM-GUI MDFF/xMDFF Utilizer for Molecular Dynamics Flexible Fitting Simulations in Various Environments. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 3718-3723	3.4	13
75	Roles of glycans in interactions between gp120 and HIV broadly neutralizing antibodies. <i>Glycobiology</i> , 2016 , 26, 251-60	5.8	13
74	Structure of an EIIC sugar transporter trapped in an inward-facing conformation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5962-5967	11.5	13
73	CHARMM-GUI Polymer Builder for Modeling and Simulation of Synthetic Polymers. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 2431-2443	6.4	12
72	Augmenting the antinociceptive effects of nicotinic acetylcholine receptor activity through lynx1 modulation. <i>PLoS ONE</i> , 2018 , 13, e0199643	3.7	12
71	ST-analyzer: a web-based user interface for simulation trajectory analysis. <i>Journal of Computational Chemistry</i> , 2014 , 35, 957-63	3.5	11
70	Characterizing Residue-Bilayer Interactions Using Gramicidin A as a Scaffold and Tryptophan Substitutions as Probes. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 5054-5064	6.4	11
69	G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures. <i>Methods in Molecular Biology</i> , 2017 , 1611, 97-108	1.4	10
68	Ligand-Binding-Site Structure Refinement Using Molecular Dynamics with Restraints Derived from Predicted Binding Site Templates. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 6524-6535	6.4	10
67	Converting One-Face Helix Mimetics into Amphiphilic Helix Mimetics as Potent Inhibitors of Protein-Protein Interactions. <i>ACS Combinatorial Science</i> , 2016 , 18, 36-42	3.9	10
66	Heterogeneity in non-epitope loop sequence and outer membrane protein complexes alters antibody binding to the major porin protein PorB in serogroup B Neisseria meningitidis. <i>Molecular Microbiology</i> , 2017 , 105, 934-953	4.1	10
65	CHARMM-GUI Supports Hydrogen Mass Repartitioning and Different Protonation States of Phosphates in Lipopolysaccharides. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 831-839	6.1	10
64	Solid-State NMR-Restrained Ensemble Dynamics of a Membrane Protein in Explicit Membranes. <i>Biophysical Journal</i> , 2015 , 108, 1954-62	2.9	9
63	GS-align for glycan structure alignment and similarity measurement. <i>Bioinformatics</i> , 2015 , 31, 2653-9	7.2	9
62	Modeling and Simulation of Bacterial Outer Membranes with Lipopolysaccharides and Enterobacterial Common Antigen. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 5948-5956	3.4	9

61	Mutually constructive roles of Ail and LPS in Yersinia pestis serum survival. <i>Molecular Microbiology</i> , 2020 , 114, 510-520	4.1	9
60	Simulation Study of Occk5 Functional Properties in Pseudomonas aeruginosa Outer Membranes. Journal of Physical Chemistry B, 2018 , 122, 8185-8192	3.4	9
59	Asymmetric Cryo-EM Structure of Anthrax Toxin Protective Antigen Pore with Lethal Factor N-Terminal Domain. <i>Toxins</i> , 2017 , 9,	4.9	9
58	Multiple Conformational States Contribute to the 3D Structure of a Glucan Decasaccharide: A Combined SAXS and MD Simulation Study. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 1169-1175	3.4	8
57	Potential Application of Alchemical Free Energy Simulations to Discriminate GPCR Ligand Efficacy. Journal of Chemical Theory and Computation, 2015 , 11, 1255-66	6.4	8
56	Beta-hairpin restraint potentials for calculations of potentials of mean force as a function of beta-hairpin tilt, rotation, and distance. <i>Journal of Computational Chemistry</i> , 2009 , 30, 1334-43	3.5	8
55	Analysis of Lipid Order States and Domains in Lipid Bilayer Simulations. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 688-697	6.4	8
54	A mechano-reactive coarse-grained model of the blood-clotting agent von Willebrand factor. Journal of Chemical Physics, 2019 , 151, 124905	3.9	7
53	Site-Specific Lipidation Enhances IFITM3 Membrane Interactions and Antiviral Activity. <i>ACS Chemical Biology</i> , 2021 , 16, 844-856	4.9	7
52	Ligand-Binding-Site Refinement to Generate Reliable Holo Protein Structure Conformations from Apo Structures. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 535-546	6.1	7
51	Long-ranged Protein-glycan Interactions Stabilize von Willebrand Factor A2 Domain from Mechanical Unfolding. <i>Scientific Reports</i> , 2018 , 8, 16017	4.9	7
50	Structural Conservation and Effects of Alterations in T Cell Receptor Transmembrane Interfaces. <i>Biophysical Journal</i> , 2018 , 114, 1030-1035	2.9	6
49	Explicit treatment of force contribution from alignment tensor using overdetermined linear equations and its application in NMR structure determination. <i>Journal of Computational Chemistry</i> , 2007 , 28, 1858-64	3.5	6
48	A novel strategy to determine protein structures using exclusively residual dipolar coupling. Journal of Computational Chemistry, 2008 , 29, 1640-9	3.5	6
47	Biomechanical Characterization of SARS-CoV-2 Spike RBD and Human ACE2 Protein-Protein Interaction 2020 ,		6
46	GlyMDB: Glycan Microarray Database and analysis toolset. <i>Bioinformatics</i> , 2020 , 36, 2438-2442	7.2	6
45	Structural basis for the association of PLEKHA7 with membrane-embedded phosphatidylinositol lipids. <i>Structure</i> , 2021 , 29, 1029-1039.e3	5.2	6
44	Modeling of Specific Lipopolysaccharide Binding Sites on a Gram-Negative Porin. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 5700-5708	3.4	5

43	O176 LPS structure and dynamics: A NMR spectroscopy and MD simulation study. <i>Current Research in Structural Biology</i> , 2020 , 2, 79-88	2.8	5	
42	Quantitative Characterization of Cholesterol Partitioning between Binary Bilayers. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 2829-2833	6.4	5	
41	Transmembrane motions of PglB induced by LLO are coupled with EL5 loop conformational changes necessary for OST activity. <i>Glycobiology</i> , 2017 , 27, 734-742	5.8	5	
40	Additive CHARMM36 Force Field for Nonstandard Amino Acids. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 3554-3570	6.4	5	
39	Structural Insight into Phospholipid Transport by the MlaFEBD Complex from P. aeruginosa. <i>Journal of Molecular Biology</i> , 2021 , 433, 166986	6.5	5	
38	CHARMM-GUI DEER facilitator for spin-pair distance distribution calculations and preparation of restrained-ensemble molecular dynamics simulations. <i>Journal of Computational Chemistry</i> , 2020 , 41, 41	5 ³ 4 ⁵ 20	5	
37	A systematic analysis of protein-carbohydrate interactions in the Protein Data Bank. <i>Glycobiology</i> , 2021 , 31, 126-136	5.8	5	
36	Molecular Simulation and Biochemical Studies Support an Elevator-type Transport Mechanism in EliC. <i>Biophysical Journal</i> , 2017 , 112, 2249-2252	2.9	4	
35	Dynamics and Interactions of GPI-Linked lynx1 Protein with/without Nicotinic Acetylcholine Receptor in Membrane Bilayers. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 4017-4025	3.4	4	
34	Broadening Activity of Polymyxin by Quaternary Ammonium Grafting. <i>ACS Infectious Diseases</i> , 2020 , 6, 1427-1435	5.5	4	
33	Developing a Fully-glycosylated Full-length SARS-CoV-2 Spike Protein Model in a Viral Membrane 2020 ,		4	
32	Preferred conformations of lipooligosaccharides and oligosaccharides of Moraxella catarrhalis. <i>Glycobiology</i> , 2020 , 30, 86-94	5.8	4	
31	Conformationally flexible core-bearing detergents with a hydrophobic or hydrophilic pendant: Effect of pendant polarity on detergent conformation and membrane protein stability. <i>Acta Biomaterialia</i> , 2021 , 128, 393-407	10.8	4	
30	Insight into Elongation Stages of Peptidoglycan Processing in Bacterial Cytoplasmic Membranes. <i>Scientific Reports</i> , 2018 , 8, 17704	4.9	4	
29	CHARMM-GUI Free Energy Calculator for Practical Ligand Binding Free Energy Simulations with AMBER. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 4145-4151	6.1	4	
28	Accurate simulation of surfaces and interfaces of ten FCC metals and steel using LennardIIones potentials. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	4	
27	CHARMM-GUI Drude prepper for molecular dynamics simulation using the classical Drude polarizable force field. <i>Journal of Computational Chemistry</i> , 2021 ,	3.5	4	
26	Stalis: A Computational Method for Template-Based Ab Initio Ligand Design. <i>Journal of Computational Chemistry</i> , 2019 , 40, 1622-1632	3.5	3	

25	U-shaped caveolin-1 conformations are tightly regulated by hydrogen bonds with lipids. <i>Journal of Computational Chemistry</i> , 2019 , 40, 1570-1577	3.5	3
24	Calcium and hydroxyapatite binding site of human vitronectin provides insights to abnormal deposit formation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 18504-18510	11.5	3
23	Location and Conformational Ensemble of Menaquinone and Menaquinol, and Protein-Lipid Modulations in Archaeal Membranes. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 4714-4725	3.4	3
22	Molecular Basis of Aqueous-like Activity of Lipase Treated with Glucose-Headed Surfactant in Organic Solvent. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 10659-10668	3.4	3
21	Quantitative Characterization of Protein-Lipid Interactions by Free Energy Simulation between Binary Bilayers. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 6491-6503	6.4	2
20	Conformational States of the Cytoprotective Protein Bcl-xL. <i>Biophysical Journal</i> , 2020 , 119, 1324-1334	2.9	2
19	Binding of Human ACE2 and RBD of Omicron Enhanced by Unique Interaction Patterns Among SARS-CoV-2 Variants of Concern. 2022 ,		2
18	Developing initial conditions for simulations of asymmetric membranes: a practical recommendation. <i>Biophysical Journal</i> , 2021 , 120, 5041-5059	2.9	2
17	Influences of Lipid A Types on LPS Bilayer Properties. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 2105-2	131.2	2
16	CHARMM-GUI for Ligand Binding Site Prediction and Refinement. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 3744-3751	6.1	2
15	CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 5192-5202	6.1	2
14	Dynamic Interactions of Fully Glycosylated SARS-CoV-2 Spike Protein with Various Antibodies. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 6559-6569	6.4	2
13	NMR characterization of hydrophobic collapses in amyloidogenic unfolded states and their implications for amyloid formation. <i>Biochemical and Biophysical Research Communications</i> , 2010 , 396, 800-5	3.4	1
12	CHARMM-GUI for Template-Based Virtual Ligand Design in a Binding Site. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 5336-5342	6.1	1
11	Structure, Dynamics, Receptor Binding, and Antibody Binding of Fully-glycosylated Full-length SARS-CoV-2 Spike Protein in a Viral Membrane		1
10	Structure, Dynamics, and Interactions of GPI-Anchored Human Glypican-1 with Heparan Sulfates in a Membrane. <i>Glycobiology</i> , 2021 , 31, 593-602	5.8	1
9	Structural basis of neuropeptide Y signaling through Y1 receptor <i>Nature Communications</i> , 2022 , 13, 853	17.4	1
8	S-palmitoylation and sterol interactions mediate antiviral specificity of IFITM isoforms. 2021 ,		1

LIST OF PUBLICATIONS

7	Cooperativity in Proteasome Core Particle Maturation. <i>IScience</i> , 2020 , 23, 101090	6.1	0
6	Systematic Assessment of Accessibility to the Surface of. <i>ACS Chemical Biology</i> , 2021 , 16, 2527-2536	4.9	O
5	Biophysical characterization of lynx-nicotinic receptor interactions using atomic force microscopy <i>FASEB BioAdvances</i> , 2021 , 3, 1034-1042	2.8	О
4	Simulating Biomolecules: Festschrift to commemorate the 60th birthday of Charles L. Brooks III. <i>Journal of Computational Chemistry</i> , 2017 , 38, 1111-1113	3.5	
3	Experimentally Guided Computational Methods Yield Highly Accurate Insights into Transmembrane Interactions within the T Cell Receptor Complex. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 10303-103	1ở ^{.4}	
2	Protein Dynamics and Ion Traffic in Bacterioferritin Function: A Molecular Dynamics Simulation Study on wild-type and Mutant Pseudomonas Aeruginosa BfrB 2016 , 1118-1129		
1	Effects of Spin-Labels on Membrane Burial Depth of MARCKS-ED Residues. <i>Biophysical Journal</i> , 2016 , 111, 1600-1603	2.9	