Matthew J Durand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3073377/publications.pdf

Version: 2024-02-01

		516710	4	177307
38	1,017	16		29
papers	citations	h-index		g-index
38	38	38		1585
30	30	30		1303
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The Human Microcirculation. Circulation Research, 2016, 118, 157-172.	4.5	222
2	Diversity in Mechanisms of Endotheliumâ€Dependent Vasodilation in Health and Disease. Microcirculation, 2013, 20, 239-247.	1.8	147
3	Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation. Circulation Research, 2016, 118, 856-866.	4.5	88
4	Vascular Actions of Angiotensin 1–7 in the Human Microcirculation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1254-1262.	2.4	55
5	An acute rise in intraluminal pressure shifts the mediator of flow-mediated dilation from nitric oxide to hydrogen peroxide in human arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1587-H1593.	3.2	54
6	Acute Exertion Elicits a H ₂ O ₂ -Dependent Vasodilator Mechanism in the Microvasculature of Exercise-Trained but Not Sedentary Adults. Hypertension, 2015, 65, 140-145.	2.7	48
7	Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1024-H1033.	3.2	45
8	Exercise and vascular function: how much is too much?. Canadian Journal of Physiology and Pharmacology, 2014, 92, 551-557.	1.4	42
9	PGC-1α (Peroxisome Proliferator–Activated Receptor γ Coactivator 1-α) Overexpression in Coronary Artery Disease Recruits NO and Hydrogen Peroxide During Flow-Mediated Dilation and Protects Against Increased Intraluminal Pressure. Hypertension, 2017, 70, 166-173.	2.7	41
10	Low-Dose Angiotensin II Infusion Restores Vascular Function in Cerebral Arteries of High Salt-Fed Rats by Increasing Copper/Zinc Superoxide Dimutase Expression. American Journal of Hypertension, 2013, 26, 739-747.	2.0	36
11	Ischemic conditioning increases strength and volitional activation of paretic muscle in chronic stroke: a pilot study. Journal of Applied Physiology, 2018, 124, 1140-1147.	2.5	33
12	Two weeks of ischemic conditioning improves walking speed and reduces neuromuscular fatigability in chronic stroke survivors. Journal of Applied Physiology, 2019, 126, 755-763.	2.5	26
13	Impaired relaxation of cerebral arteries in the absence of elevated salt intake in normotensive congenic rats carrying the Dahl salt-sensitive renin gene. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1865-H1874.	3.2	25
14	Visualization and quantification of mitochondrial structure in the endothelium of intact arteries. Cardiovascular Research, 2019, 115, 1546-1556.	3.8	21
15	Introgression of the Brown Norway Renin Allele Onto the Dahl Salt-Sensitive Genetic Background Increases Cu/Zn SOD Expression in Cerebral Arteries. American Journal of Hypertension, 2011, 24, 563-568.	2.0	19
16	The vascular renin-angiotensin system contributes to blunted vasodilation induced by transient high pressure in human adipose microvessels. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H25-H32.	3.2	18
17	Mitochondria-regulated formation of endothelium-derived extracellular vesicles shifts the mediator of flow-induced vasodilation. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1096-H1104.	3.2	17
18	Stroke increases ischemia-related decreases in motor unit discharge rates. Journal of Neurophysiology, 2018, 120, 3246-3256.	1.8	13

#	Article	IF	CITATIONS
19	Microvascular Adaptations to Exercise: Protective Effect of PGC-1 Alpha. American Journal of Hypertension, 2018, 31, 240-246.	2.0	11
20	Impaired Hyperemic Response to Exercise Post Stroke. PLoS ONE, 2015, 10, e0144023.	2.5	11
21	Comparing pain relief and functional improvement between methylprednisolone and dexamethasone lumbosacral transforaminal epidural steroid injections: a self-controlled study. Korean Journal of Pain, 2020, 33, 192-198.	2.2	11
22	The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke. Frontiers in Physiology, 2019, 10, 545.	2.8	10
23	Regenerative Angiogenesis. Circulation Research, 2017, 120, 1379-1380.	4.5	6
24	BCRâ€ABL tyrosine kinase inhibitors promote pathological changes in dilator phenotype in the human microvasculature. Microcirculation, 2020, 27, e12625.	1.8	6
25	Two weeks of remote ischemic conditioning improves brachial artery flow mediated dilation in chronic stroke survivors. Journal of Applied Physiology, 2020, 129, 1348-1354.	2.5	5
26	You Are Only as Frail as Your Arteries: Prehabilitation of Elderly Surgical Patients. Current Anesthesiology Reports, 2019, 9, 380-386.	2.0	3
27	Identifying High-Attenuating and Low-Attenuating Muscle Using Computerized Tomography and Exploring Its Impact on Physical Function and Muscle Strength in Obese Critically III Patients. Nutrition in Clinical Practice, 2020, 35, 133-141.	2.4	2
28	Pain relief following genicular nerve radiofrequency ablation: does knee compartment matter?. Pain Management, 2021, 11, 705-714.	1.5	1
29	Vasodilator and Vasoprotective Actions of Angiotensin 1â€7 in the Human Microcirculation – Role of Telomerase. FASEB Journal, 2015, 29, 789.3.	0.5	1
30	Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats. Journal of Visualized Experiments, 2017, , .	0.3	0
31	There is no way to sugar coat it, you are getting older. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H632-H633.	3.2	0
32	Restoration of Vascular Relaxation in Cerebral Arteries of Congenic Dahl Rats Receiving the Brown Norway (BN) Renin Gene. FASEB Journal, 2008, 22, 1142.5.	0.5	0
33	Suppressed Plasma Angiotensin II and Reduced Antioxidant Enzyme Expression Contribute to Impaired Vascular Relaxation in Dahl Salt‧ensitive Rats. FASEB Journal, 2009, 23, 1017.14.	0.5	0
34	Introgression of the Brown Norway Renin Gene onto the Dahl Salt Sensitive Genetic Background Restores Endotheliumâ€Dependent Vascular Relaxation by Reducing Oxidative Stress in the Cerebral Vasculature. FASEB Journal, 2010, 24, 776.1.	0.5	0
35	The Vascular Renin Angiotensin System Contributes to Endothelial Dysfunction Induced by Acute High Pressure in Human Adipose Microvessels. FASEB Journal, 2012, 26, 676.8.	0.5	0
36	Plasticity in the Microvasculature of Conditioned Weight Lifters After Acute High Pressure Stress. FASEB Journal, 2013, 27, 1136.1.	0.5	0

#	Article	lF	CITATIONS
37	Inhibition of the vascular reninâ€angiotensin system preserves nitric oxideâ€mediated vasodilation in human adipose arterioles after transient high pressure stress (676.9). FASEB Journal, 2014, 28, 676.9.	0.5	o
38	Take charge during treatment: A planned exercise protocol to evaluate disparities and cardiovascular outcomes in Black and White patients with breast cancer undergoing treatment. Journal of Clinical Oncology, 2022, 40, TPS12138-TPS12138.	1.6	0