
Masaru Terasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3073091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EVALUATION OF RECOVERABLE FUNCTIONAL LIPID COMPONENTS OF SEVERAL BROWN SEAWEEDS (PHAEOPHYTA) FROM JAPAN WITH SPECIAL REFERENCE TO FUCOXANTHIN AND FUCOSTEROL CONTENTS ¹ . Journal of Phycology, 2009, 45, 974-980.	2.3	151
2	Characterization of Apoptosis Induced by Fucoxanthin in Human Promyelocytic Leukemia Cells. Bioscience, Biotechnology and Biochemistry, 2005, 69, 224-227.	1.3	96
3	Keto-Carotenoids Are the Major Metabolites of Dietary Lutein and Fucoxanthin in Mouse Tissues1–3. Journal of Nutrition, 2010, 140, 1824-1831.	2.9	80
4	Fucoxanthin potentiates anoikis in colon mucosa and prevents carcinogenesis in AOM/DSS model mice. Journal of Nutritional Biochemistry, 2019, 64, 198-205.	4.2	35
5	Spatial and seasonal variations in the biofunctional lipid substances (fucoxanthin and fucosterol) of the laboratory-grown edible Japanese seaweed (Sargassum horneri Turner) cultured in the open sea. Saudi Journal of Biological Sciences, 2017, 24, 1475-1482.	3.8	34
6	Dietary Fucoxanthin Induces Anoikis in Colorectal Adenocarcinoma by Suppressing Integrin Signaling in a Murine Colorectal Cancer Model. Journal of Clinical Medicine, 2020, 9, 90.	2.4	33
7	Alteration of fecal microbiota by fucoxanthin results in prevention of colorectal cancer in AOM/DSS mice. Carcinogenesis, 2021, 42, 210-219.	2.8	33
8	Carotenoid Profile of Edible Japanese Seaweeds: An Improved HPLC Method for Separation of Major Carotenoids. Journal of Aquatic Food Product Technology, 2012, 21, 468-479.	1.4	29
9	An analytical survey of benzotriazole UV stabilizers in plastic products and their endocrine-disrupting potential via human estrogen and androgen receptors. Science of the Total Environment, 2021, 800, 149374.	8.0	29
10	Induction of Anoikis in Human Colorectal Cancer Cells by Fucoxanthinol. Nutrition and Cancer, 2017, 69, 1043-1052.	2.0	26
11	A marine bio-functional lipid, fucoxanthinol, attenuates human colorectal cancer stem-like cell tumorigenicity and sphere formation. Journal of Clinical Biochemistry and Nutrition, 2017, 61, 25-32.	1.4	26
12	Fucoxanthin and Colorectal Cancer Prevention. Cancers, 2021, 13, 2379.	3.7	26
13	Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucoxanthinol in colorectal cancer stem-like cells. Oncology Reports, 2018, 40, 414-424.	2.6	25
14	Glycerolipid Acyl Hydrolase Activity in the Brown AlgaCladosiphon okamuranusTOKIDA. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1986-1989.	1.3	18
15	Inhibition of NF-kappaB transcriptional activity enhances fucoxanthinol-induced apoptosis in colorectal cancer cells. Genes and Environment, 2019, 41, 1.	2.1	15
16	Synthesis of Phaitanthrin E and Tryptanthrin through Amination/Cyclization Cascade. Helvetica Chimica Acta, 2018, 101, e1700284.	1.6	14
17	Fucoxanthin administration delays occurrence of tumors in xenograft mice by colonospheres, with an anti-tumor predictor of glycine. Journal of Clinical Biochemistry and Nutrition, 2019, 64, 52-58.	1.4	14
18	Salivary Glycine Is a Significant Predictor for the Attenuation of Polyp and Tumor Microenvironment Formation by Fucoyanthin in AOM/DSS Mice. In Vivo. 2019. 33, 365-374	1.3	13

Masaru Terasaki

#	Article	IF	CITATIONS
19	High fucoxanthin wakame (Undaria pinnatifida) prevents tumor microenvironment formation in an AOM/DSS mouse carcinogenic model. Journal of Functional Foods, 2020, 64, 103709.	3.4	12
20	Fucoxanthinol Induces Apoptosis in a Pancreatic Intraepithelial Neoplasia Cell Line. Cancer Genomics and Proteomics, 2021, 18, 133-146.	2.0	12
21	Suppression of C-C chemokine receptor 1 is a key regulation for colon cancer chemoprevention in AOM/DSS mice by fucoxanthin. Journal of Nutritional Biochemistry, 2022, 99, 108871.	4.2	11
22	Involvement of NADPH oxidases in suppression of cyclooxygenase-2 promoter-dependent transcriptional activities by sesamol. Journal of Clinical Biochemistry and Nutrition, 2015, 56, 118-122.	1.4	10
23	A Marine Carotenoid of Fucoxanthinol Accelerates the Growth of Human Pancreatic Cancer PANC-1 Cells. Nutrition and Cancer, 2022, 74, 357-371.	2.0	10
24	Effects of CLIC4 on Fucoxanthinol-Induced Apoptosis in Human Colorectal Cancer Cells. Nutrition and Cancer, 2021, 73, 889-898.	2.0	9
25	Fucoxanthin Prevents Colorectal Cancer Development in Dextran Sodium Sulfate-treated ApcMin/+ Mice. Anticancer Research, 2021, 41, 1299-1305.	1.1	9
26	Fucoxanthin Prevents Pancreatic Tumorigenesis in C57BL/6J Mice That Received Allogenic and Orthotopic Transplants of Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 13620.	4.1	9
27	Effect of Fucoxanthinol on Pancreatic Ductal Adenocarcinoma Cells from an <i>N</i> -Nitrosobis(2-oxopropyl)amine-initiated Syrian Golden Hamster Pancreatic Carcinogenesis Model. Cancer Genomics and Proteomics, 2021, 18, 407-423.	2.0	8
28	Effects of benzotriazole UV stabilizers, UV-PS and UV-P, on the differentiation of splenic regulatory T cells via aryl hydrocarbon receptor. Ecotoxicology and Environmental Safety, 2022, 238, 113549.	6.0	7
29	Total Synthesis of Fontanesine B and Its Isomer: Their Antiproliferative Activity against Human Colorectal Cancer Cells. Helvetica Chimica Acta, 2019, 102, e1900116.	1.6	6
30	Continuity of Tumor Microenvironmental Suppression in AOM/DSS Mice by Fucoxanthin May Be Able to Track With Salivary Glycine. In Vivo, 2020, 34, 3205-3215.	1.3	6
31	Glycine Is a Predictor for a Suppressive Effect of Fucoxanthinol on Colonosphere Formation Under Hypoxia. Anticancer Research, 2018, 38, 2169-2179.	1.1	6
32	Downregulated expression of intestinal P-glycoprotein in rats with cisplatin-induced acute kidney injury causes amplification of its transport capacity to maintain "gatekeeper―function. Toxicology and Applied Pharmacology, 2021, 423, 115570.	2.8	5
33	Growth-related changes in non-essential and essential metals in the liver of star-spotted smooth-hounds (dogfish) Mustelus manazo from the northern region of Japan. Marine Environmental Research, 2017, 131, 156-161.	2.5	4
34	CUB Domain-containing Protein 1 (CDCP1) Is Down-regulated by Active Hexose-correlated Compound in Human Pancreatic Cancer Cells. Anticancer Research, 2018, 38, 6107-6111.	1.1	4
35	Downregulated expression of organic anion transporting polypeptide (Oatp) 2b1 in the small intestine of rats with acute kidney injury. Drug Metabolism and Pharmacokinetics, 2021, 40, 100411.	2.2	4
36	Fucoxanthinol Promotes Apoptosis in MCF-7 and MDA-MB-231 Cells by Attenuating Laminins–Integrins Axis. Onco, 2022, 2, 145-163.	0.6	3

#	ARTICLE	IF	CITATIONS
37	5-Aminosalicylic Acid, A Weak Agonist for Aryl Hydrocarbon Receptor That Induces Splenic Regulatory T Cells. Pharmacology, 2022, 107, 28-34.	2.2	2
38	A Biscuit Containing Fucoxanthin Prevents Colorectal Carcinogenesis in Mice. Nutrition and Cancer, 0, , 1-11.	2.0	2
39	Detection of Cells Displaying High Expression of CLIC4 in Tumor Tissue of Patients With Colorectal Cancer. In Vivo, 2021, 35, 3165-3173.	1.3	1
40	Nine Cases of SARS-CoV-2-PCR-positive Samples Showed No Increase of Antibodies Against SARS-CoV-2. In Vivo, 2021, 35, 2947-2949.	1.3	0
41	Induction of DNA Damage in Mouse Colorectum by Administration of Colibactin-producing <i>Escherichia coli</i> , Isolated from a Patient With Colorectal Cancer. In Vivo, 2022, 36, 628-634.	1.3	0