
Donald K Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3072773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>c-Myc</i> Oncogene Maintains Corneal Epithelial Architecture at Homeostasis, Modulates p63 Expression, and Enhances Proliferation During Tissue Repair. , 2022, 63, 3.		7
2	Nrf2 Regulates β-Cell Mass by Suppressing β-Cell Death and Promoting β-Cell Proliferation. Diabetes, 2022, 71, 989-1011.	0.6	14
3	Disrupting the DREAM complex enables proliferation of adult human pancreatic $\hat{\mathbf{l}}^2$ cells. Journal of Clinical Investigation, 2022, 132, .	8.2	14
4	Nrf2: The Master and Captain of Beta Cell Fate. Trends in Endocrinology and Metabolism, 2021, 32, 7-19.	7.1	56
5	The many lives of Myc in the pancreatic β-cell. Journal of Biological Chemistry, 2021, 296, 100122.	3.4	16
6	Adaptive and maladaptive roles for ChREBP in the liver and pancreatic islets. Journal of Biological Chemistry, 2021, 296, 100623.	3.4	22
7	Pharmacological blockade of the EP3 prostaglandin E2 receptor in the setting of type 2 diabetes enhances β-cell proliferation and identity and relieves oxidative damage. Molecular Metabolism, 2021, 54, 101347.	6.5	14
8	Aberrant methylation underlies insulin gene expression in human insulinoma. Nature Communications, 2020, 11, 5210.	12.8	9
9	GLP-1 receptor agonists synergize with DYRK1A inhibitors to potentiate functional human \hat{l}^2 cell regeneration. Science Translational Medicine, 2020, 12, .	12.4	81
10	HB-EGF Signaling Is Required for Glucose-Induced Pancreatic Î ² -Cell Proliferation in Rats. Diabetes, 2020, 69, 369-380.	0.6	16
11	Pharmacologic and genetic approaches define human pancreatic Î ² cell mitogenic targets of DYRK1A inhibitors. JCI Insight, 2020, 5, .	5.0	35
12	Myc Is Required for Adaptive β-Cell Replication in Young Mice but Is Not Sufficient in One-Year-Old Mice Fed With a High-Fat Diet. Diabetes, 2019, 68, 1934-1949.	0.6	23
13	Hypusine biosynthesis in β cells links polyamine metabolism to facultative cellular proliferation to maintain glucose homeostasis. Science Signaling, 2019, 12, .	3.6	37
14	Combined Inhibition of DYRK1A, SMAD, and Trithorax Pathways Synergizes to Induce Robust Replication in Adult Human Beta Cells. Cell Metabolism, 2019, 29, 638-652.e5.	16.2	113
15	Aging of Antiviral CD8+ Memory T Cells Fosters Increased Survival, Metabolic Adaptations, and Lymphoid Tissue Homing. Journal of Immunology, 2019, 202, 460-475.	0.8	23
16	Replication confers \hat{I}^2 cell immaturity. Nature Communications, 2018, 9, 485.	12.8	123
17	T3 and Glucose Coordinately Stimulate ChREBP-Mediated Ucp1 Expression in Brown Adipocytes From Male Mice. Endocrinology, 2018, 159, 557-569.	2.8	24
18	Activation of Nrf2 Is Required for Normal and ChREBPα-Augmented Glucose-Stimulated β-Cell Proliferation. Diabetes, 2018, 67, 1561-1575.	0.6	31

DONALD K SCOTT

#	Article	IF	CITATIONS
19	DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet. Molecular Metabolism, 2017, 6, 327-339.	6.5	27
20	Insights into beta cell regeneration for diabetes via integration of molecular landscapes in human insulinomas. Nature Communications, 2017, 8, 767.	12.8	67
21	MPI depletion enhances O-GlcNAcylation of p53 and suppresses the Warburg effect. ELife, 2017, 6, .	6.0	30
22	Mechanisms by which the thiazolidinedione troglitazone protects against sucroseâ€induced hepatic fat accumulation and hyperinsulinaemia. British Journal of Pharmacology, 2016, 173, 267-278.	5.4	14
23	PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes, 2016, 65, 1283-1296.	0.6	40
24	Abnormal lipid processing but normal long-term repopulation potential of <i>mycâ^'/â^'</i> hepatocytes. Oncotarget, 2016, 7, 30379-30395.	1.8	39
25	Diabetes mellitus—advances and challenges in human β-cell proliferation. Nature Reviews Endocrinology, 2015, 11, 201-212.	9.6	169
26	A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nature Medicine, 2015, 21, 383-388.	30.7	313
27	Induction of the ChREBPÎ ² Isoform Is Essential for Glucose-Stimulated Î ² -Cell Proliferation. Diabetes, 2015, 64, 4158-4170.	0.6	42
28	c-Myc Programs Fatty Acid Metabolism and Dictates Acetyl-CoA Abundance and Fate. Journal of Biological Chemistry, 2014, 289, 25382-25392.	3.4	93
29	Human β-Cell Proliferation and Intracellular Signaling Part 2: Still Driving in the Dark Without a Road Map. Diabetes, 2014, 63, 819-831.	0.6	155
30	Human Pancreatic β-Cell G1/S Molecule Cell Cycle Atlas. Diabetes, 2013, 62, 2450-2459.	0.6	62
31	Cytoplasmic-Nuclear Trafficking of G1/S Cell Cycle Molecules and Adult Human β-Cell Replication. Diabetes, 2013, 62, 2460-2470.	0.6	53
32	Effect of cyclosporine A on hepatic carbohydrate metabolism and hepatic gene expression in rat. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 1223-1230.	3.3	4
33	ChREBP Mediates Glucose-Stimulated Pancreatic Î ² -Cell Proliferation. Diabetes, 2012, 61, 2004-2015.	0.6	98
34	Dendritic Cells Promote Macrophage Infiltration and Comprise a Substantial Proportion of Obesity-Associated Increases in CD11c+ Cells in Adipose Tissue and Liver. Diabetes, 2012, 61, 2330-2339.	0.6	177
35	Glucose-Dependent Regulation of NR2F2 Promoter and Influence of SNP-rs3743462 on Whole Body Insulin Sensitivity. PLoS ONE, 2012, 7, e35810.	2.5	9
36	β-Catenin is essential for ethanol metabolism and protection against alcohol-mediated liver steatosis in mice. Hepatology, 2012, 55, 931-940.	7.3	47

DONALD K SCOTT

#	Article	IF	CITATIONS
37	cMyc Is a Principal Upstream Driver of β-Cell Proliferation in Rat Insulinoma Cell Lines and Is an Effective Mediator of Human β-Cell Replication. Molecular Endocrinology, 2011, 25, 1760-1772.	3.7	46
38	Activation of Protein Kinase C-ζ in Pancreatic β-Cells In Vivo Improves Glucose Tolerance and Induces β-Cell Expansion via mTOR Activation. Diabetes, 2011, 60, 2546-2559.	0.6	42
39	Maintenance of naÃ⁻ve CD8 T cells in nonagenarians by leptin, IGFBP3 and T3. Mechanisms of Ageing and Development, 2010, 131, 29-37.	4.6	42
40	Parathyroid Hormone–Related Protein Enhances Human β-Cell Proliferation and Function With Associated Induction of Cyclin-Dependent Kinase 2 and Cyclin E Expression. Diabetes, 2010, 59, 3131-3138.	0.6	55
41	c-Myc Is Required for the ChREBP-Dependent Activation of Glucose-Responsive Genes. Molecular Endocrinology, 2010, 24, 1274-1286.	3.7	46
42	Induction of Human β-Cell Proliferation and Engraftment Using a Single G1/S Regulatory Molecule, cdk6. Diabetes, 2010, 59, 1926-1936.	0.6	120
43	Depletion of Liver Kupffer Cells Prevents the Development of Diet-Induced Hepatic Steatosis and Insulin Resistance. Diabetes, 2010, 59, 347-357.	0.6	426
44	Transcriptional Regulation of Human Dual Specificity Protein Phosphatase 1 (DUSP1) Gene by Glucocorticoids. PLoS ONE, 2010, 5, e13754.	2.5	93
45	Regulation of Reactive Oxygen Species Homeostasis by Peroxiredoxins and c-Myc. Journal of Biological Chemistry, 2009, 284, 6520-6529.	3.4	73
46	cAMP opposes the glucoseâ€mediated induction of the Lâ€PK gene by preventing the recruitment of a complex containing ChREBP, HNF4α, and CBP. FASEB Journal, 2009, 23, 2855-2865.	0.5	31
47	cAMP Prevents Glucose-Mediated Modifications of Histone H3 and Recruitment of the RNA Polymerase II Holoenzyme to the L-PK Gene Promoter. Journal of Molecular Biology, 2009, 392, 578-588.	4.2	23
48	Detailed molecular analysis of the induction of the L-PK gene by glucose. Biochemical and Biophysical Research Communications, 2008, 372, 131-136.	2.1	12
49	Lessons From the First Comprehensive Molecular Characterization of Cell Cycle Control in Rodent Insulinoma Cell Lines. Diabetes, 2008, 57, 3056-3068.	0.6	52
50	The MODY1 Gene for Hepatocyte Nuclear Factor 4α and a Feedback Loop Control COUP-TFII Expression in Pancreatic Beta Cells. Molecular and Cellular Biology, 2008, 28, 4588-4597.	2.3	21
51	The promoter for the gene encoding the catalytic subunit of rat glucose-6-phosphatase contains two distinct glucose-responsive regions. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E788-E801.	3.5	52
52	c-Myc and ChREBP regulate glucose-mediated expression of the L-type pyruvate kinase gene in INS-1-derived 832/13 cells. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E48-E56.	3.5	41
53	Glucose Infusion in Mice: A New Model to Induce Â-Cell Replication. Diabetes, 2007, 56, 1792-1801.	0.6	236
54	CD8 T-cell immune phenotype of successful aging. Mechanisms of Ageing and Development, 2006, 127, 231-239.	4.6	22

DONALD K SCOTT

#	Article	IF	CITATIONS
55	Impaired apoptosis and immune senescence - cause or effect?. Immunological Reviews, 2005, 205, 130-146.	6.0	65
56	Sweet Changes: Glucose Homeostasis Can Be Altered by Manipulating Genes Controlling Hepatic Glucose Metabolism. Molecular Endocrinology, 2004, 18, 1051-1063.	3.7	40
57	Phosphatidylinositol 3-kinase inhibitors reveal a unique mechanism of enhancing insulin secretion in 832/13 rat insulinoma cells. Biochemical and Biophysical Research Communications, 2004, 324, 1018-1023.	2.1	21
58	Prolonged culture in low glucose induces apoptosis of rat pancreatic β-cells through induction of c-myc. Biochemical and Biophysical Research Communications, 2003, 312, 937-944.	2.1	73
59	c-Myc Is Required for the Glucose-mediated Induction of Metabolic Enzyme Genes. Journal of Biological Chemistry, 2003, 278, 6588-6595.	3.4	52
60	A Point Mutation of the AF2 Transactivation Domain of the Glucocorticoid Receptor Disrupts Its Interaction with Steroid Receptor Coactivator 1. Journal of Biological Chemistry, 2002, 277, 26098-26102.	3.4	29
61	A single element in the phosphoenolpyruvate carboxykinase gene mediates thiazolidinedione action specifically in adipocytes. Biochimie, 2001, 83, 933-943.	2.6	69
62	The Molecular Physiology of Hepatic Nuclear Factor 3 in the Regulation of Gluconeogenesis. Journal of Biological Chemistry, 2000, 275, 14717-14721.	3.4	58
63	Transcription Activation by the Orphan Nuclear Receptor, Chicken Ovalbumin Upstream Promoter-Transcription Factor I (COUP-TFI). Journal of Biological Chemistry, 2000, 275, 3446-3454.	3.4	40
64	CCAAT/Enhancer-binding Protein β Is an Accessory Factor for the Glucocorticoid Response from the cAMP Response Element in the Rat Phosphoenolpyruvate Carboxykinase Gene Promoter. Journal of Biological Chemistry, 1999, 274, 5880-5887.	3.4	86
65	Structural Requirements of the Glucocorticoid and Retinoic Acid Response Units in the Phosphoenolpyruvate Carboxykinase Gene Promoter. Molecular Endocrinology, 1998, 12, 1487-1498.	3.7	52
66	Further Characterization of the Glucocorticoid Response Unit in the Phosphoenolpyruvate Carboxykinase Gene. The Role of the Glucocorticoid Receptor-Binding Sites. Molecular Endocrinology, 1998, 12, 482-491.	3.7	73
67	The Repression of Hormone-activated PEPCK Gene Expression by Glucose Is Insulin-independent but Requires Glucose Metabolism. Journal of Biological Chemistry, 1998, 273, 24145-24151.	3.4	93
68	Identification and Characterization of a Second Retinoic Acid Response Element in the Phosphoenolpyruvate Carboxykinase Gene Promoter. Journal of Biological Chemistry, 1996, 271, 6260-6264.	3.4	56
69	The Orphan Receptor COUP-TF Binds to a Third Glucocorticoid Accessory Factor Element within the Phosphoenolpyruvate Carboxykinase Gene Promoter. Journal of Biological Chemistry, 1996, 271, 31909-31914.	3.4	79