## Dzmitry G Shcharbin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3072549/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. Journal of Controlled Release, 2008, 132, 55-64.                       | 9.9  | 154       |
| 2  | Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opinion on Drug<br>Delivery, 2013, 10, 1687-1698.                                                | 5.0  | 98        |
| 3  | Dendrimers and hyperbranched structures for biomedical applications. European Polymer Journal, 2019, 119, 61-73.                                                              | 5.4  | 98        |
| 4  | How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo.<br>Journal of Controlled Release, 2014, 181, 40-52.                     | 9.9  | 93        |
| 5  | How to study dendriplexes I: Characterization. Journal of Controlled Release, 2009, 135, 186-197.                                                                             | 9.9  | 83        |
| 6  | Dendrimers Show Promise for siRNA and microRNA Therapeutics. Pharmaceutics, 2018, 10, 126.                                                                                    | 4.5  | 77        |
| 7  | How to study dendriplexes II: Transfection and cytotoxicity. Journal of Controlled Release, 2010, 141, 110-127.                                                               | 9.9  | 72        |
| 8  | Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. International Journal of Pharmaceutics, 2015, 485, 288-294. | 5.2  | 71        |
| 9  | Serum albumins have five sites for binding of cationic dendrimers. Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2007, 1774, 946-951.                           | 2.3  | 70        |
| 10 | Biological properties of low molecular mass peptide dendrimers. International Journal of Pharmaceutics, 2006, 309, 208-217.                                                   | 5.2  | 67        |
| 11 | Transfection efficiencies of PAMAM dendrimers correlate inversely with their hydrophobicity.<br>International Journal of Pharmaceutics, 2010, 383, 228-235.                   | 5.2  | 65        |
| 12 | Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction.<br>International Journal of Pharmaceutics, 2015, 485, 261-269.         | 5.2  | 64        |
| 13 | Dendrimer Interactions with Hydrophobic Fluorescent Probes and Human Serum Albumin. Journal of Fluorescence, 2005, 15, 21-28.                                                 | 2.5  | 61        |
| 14 | Water-soluble carbosilane dendrimers protect phosphorothioate oligonucleotides from binding to serum proteins. Organic and Biomolecular Chemistry, 2007, 5, 1886-1893.        | 2.8  | 55        |
| 15 | Influence of fourth generation poly(propyleneimine) dendrimers on blood cells. Journal of<br>Biomedical Materials Research - Part A, 2012, 100A, 2870-2880.                   | 4.0  | 54        |
| 16 | Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Progress in Polymer Science, 2017, 64, 23-51.      | 24.7 | 54        |
| 17 | Dendrimers in gene transfection. Biochemistry (Moscow), 2009, 74, 1070-1079.                                                                                                  | 1.5  | 50        |
| 18 | Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110354.                              | 5.0  | 50        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Doxycycline-regulated GDNF expression promotes axonal regeneration and functional recovery in transected peripheral nerve. Journal of Controlled Release, 2013, 172, 841-851.                        | 9.9 | 48        |
| 20 | Analysis of Interaction between Dendriplexes and Bovine Serum Albumin. Biomacromolecules, 2007, 8, 2059-2062.                                                                                        | 5.4 | 47        |
| 21 | Fourth Generation Phosphorus-Containing Dendrimers: Prospective Drug and Gene Delivery Carrier.<br>Pharmaceutics, 2011, 3, 458-473.                                                                  | 4.5 | 46        |
| 22 | Effect of dendrimers on pure acetylcholinesterase activity and structure. Bioelectrochemistry, 2006, 68, 56-59.                                                                                      | 4.6 | 45        |
| 23 | Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids and Surfaces B:<br>Biointerfaces, 2017, 152, 414-422.                                                                   | 5.0 | 42        |
| 24 | Novel â€~SiC' carbosilane dendrimers as carriers for anti-HIV nucleic acids: Studies on complexation and interaction with blood cells. Colloids and Surfaces B: Biointerfaces, 2013, 109, 183-189.   | 5.0 | 40        |
| 25 | Nanomaterials in Stroke Treatment. Stroke, 2013, 44, 2351-2355.                                                                                                                                      | 2.0 | 39        |
| 26 | Dendrimer–protein interactions studied by tryptophan room temperature phosphorescence.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1750-1756.                            | 2.3 | 38        |
| 27 | Nanoparticles in Combating Cancer: Opportunities and Limitations: A Brief Review. Current Medicinal Chemistry, 2020, 28, 346-359.                                                                    | 2.4 | 38        |
| 28 | The effect of PAMAM dendrimers on human and bovine serum albumin at different pH and NaCl concentrations. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1081-1093.                     | 3.5 | 37        |
| 29 | Carbosilane Dendrimers are a Non-Viral Delivery System for Antisense Oligonucleotides:<br>Characterization of Dendriplexes. Journal of Biomedical Nanotechnology, 2012, 8, 57-73.                    | 1.1 | 34        |
| 30 | Ruthenium metallodendrimers with anticancer potential in an acute promyelocytic leukemia cell line<br>(HL60). European Polymer Journal, 2017, 87, 39-47.                                             | 5.4 | 34        |
| 31 | Cytotoxicity, haematotoxicity and genotoxicity of high molecular mass arborescent polyoxyethylene polymers with polyglycidol-block-containing shells. Cell Biology International, 2006, 30, 248-252. | 3.0 | 33        |
| 32 | Carbosilane dendrimers NN8 and NN16 form a stable complex with siGAG1. Colloids and Surfaces B:<br>Biointerfaces, 2011, 83, 388-391.                                                                 | 5.0 | 33        |
| 33 | Ruthenium dendrimers as carriers for anticancer siRNA. Journal of Inorganic Biochemistry, 2018, 181, 18-27.                                                                                          | 3.5 | 33        |
| 34 | Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate<br>Tracking in Spinal Cord Injury. Macromolecular Bioscience, 2015, 15, 1523-1534.                    | 4.1 | 31        |
| 35 | Nanoparticle corona for proteins: mechanisms of interaction between dendrimers and proteins.<br>Colloids and Surfaces B: Biointerfaces, 2015, 134, 377-383.                                          | 5.0 | 31        |
| 36 | The breakdown of bilayer lipid membranes by dendrimers. Cellular and Molecular Biology Letters, 2006, 11, 242-8.                                                                                     | 7.0 | 30        |

| #  | Article                                                                                                                                                                                                                                      | IF        | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 37 | Does fluorescence of ANS reflect its binding to PAMAM dendrimer?. Bioorganic Chemistry, 2007, 35, 170-174.                                                                                                                                   | 4.1       | 30             |
| 38 | Use of polyamidoamine dendrimers to engineer BDNF-producing human mesenchymal stem cells.<br>Molecular Biology Reports, 2010, 37, 2003-2008.                                                                                                 | 2.3       | 30             |
| 39 | Circulating microRNAs in Medicine. International Journal of Molecular Sciences, 2022, 23, 3996.                                                                                                                                              | 4.1       | 30             |
| 40 | Estimation of PAMAM Dendrimers' Binding Capacity by Fluorescent Probe ANS. Journal of Fluorescence, 2003, 13, 519-524.                                                                                                                       | 2.5       | 29             |
| 41 | Interaction between PAMAM 4.5 dendrimer, cadmium and bovine serum albumin: A study using equilibrium dialysis, isothermal titration calorimetry, zeta-potential and fluorescence. Colloids and Surfaces B: Biointerfaces, 2007, 58, 286-289. | 5.0       | 26             |
| 42 | Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. Colloids and Interfaces, 2017, 1, 6.                                                        | 2.1       | 26             |
| 43 | Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties.<br>Dalton Transactions, 2017, 46, 8736-8745.                                                                                            | 3.3       | 25             |
| 44 | Complexes of Pro-Apoptotic siRNAs and Carbosilane Dendrimers: Formation and Effect on Cancer Cells. Pharmaceutics, 2019, 11, 25.                                                                                                             | 4.5       | 24             |
| 45 | Impact of PAMAM G2 and G6 dendrimers on bovine serum albumin (fatty acids free and loaded with) Tj ETQq1                                                                                                                                     | 1 0.78431 | 4 rgBT /Overld |
| 46 | In vivo therapeutic applications of phosphorus dendrimers: state of the art. Drug Discovery Today, 2021, 26, 677-689.                                                                                                                        | 6.4       | 23             |
| 47 | Non-Viral Engineering of Skin Precursor-Derived Schwann Cells for Enhanced NT-3 Production in Adherent and Microcarrier Culture. Current Medicinal Chemistry, 2012, 19, 5572-5579.                                                           | 2.4       | 22             |
| 48 | Binding properties of polyamidoamine dendrimers. Journal of Applied Polymer Science, 2007, 103, 2036-2040.                                                                                                                                   | 2.6       | 21             |
| 49 | Binding Properties of Water-Soluble Carbosilane Dendrimers. Journal of Fluorescence, 2009, 19, 267-275.                                                                                                                                      | 2.5       | 21             |
| 50 | Effect of dendrimers on selected enzymes—Evaluation of nano carriers. International Journal of<br>Pharmaceutics, 2016, 499, 247-254.                                                                                                         | 5.2       | 21             |
| 51 | Stabilizing effect of small concentrations of PAMAM dendrimers at the insulin aggregation. Colloids and Surfaces B: Biointerfaces, 2014, 116, 757-760.                                                                                       | 5.0       | 20             |
| 52 | Dendrimers complexed with HIV-1 peptides interact with liposomes and lipid monolayers. Biochimica Et<br>Biophysica Acta - Biomembranes, 2015, 1848, 907-915.                                                                                 | 2.6       | 20             |
| 53 | Ruthenium Dendrimers against Human Lymphoblastic Leukemia 1301 Cells. International Journal of Molecular Sciences, 2020, 21, 4119.                                                                                                           | 4.1       | 20             |
| 54 | Neurons and Stromal Stem Cells as Targets for Polycation-Mediated Transfection. Bulletin of Experimental Biology and Medicine, 2011, 151, 126-129.                                                                                           | 0.8       | 19             |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drug. Biomolecules, 2019, 9, 411.                                                                                     | 4.0 | 19        |
| 56 | Dendrimer-Driven Neurotrophin Expression Differs in Temporal Patterns between Rodent and Human<br>Stem Cells. Molecular Pharmaceutics, 2012, 9, 1521-1528.                                                            | 4.6 | 18        |
| 57 | Contribution of hydrophobicity, DNA and proteins to the cytotoxicity of cationic PAMAM dendrimers.<br>International Journal of Pharmaceutics, 2013, 454, 1-3.                                                         | 5.2 | 18        |
| 58 | The interaction between PAMAM G3.5 dendrimer, Cd2+, dendrimer–Cd2+ complexes and human serum albumin. Colloids and Surfaces B: Biointerfaces, 2009, 69, 95-98.                                                        | 5.0 | 17        |
| 59 | Non-virally Modified Human Mesenchymal Stem Cells Produce Ciliary Neurotrophic Factor in<br>Biodegradable Fibrin-Based 3D Scaffolds. Journal of Pharmaceutical Sciences, 2012, 101, 1546-1554.                        | 3.3 | 17        |
| 60 | Interference of cationic polymeric nanoparticles with clinical chemistry tests—Clinical relevance.<br>International Journal of Pharmaceutics, 2014, 473, 599-606.                                                     | 5.2 | 15        |
| 61 | Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. Journal of<br>Molecular Liquids, 2021, 324, 114726.                                                                                | 4.9 | 15        |
| 62 | Ruthenium dendrimers against acute promyelocytic leukemia:Â <i>in vitro</i> studies on HL-60 cells.<br>Future Medicinal Chemistry, 2019, 11, 1741-1756.                                                               | 2.3 | 14        |
| 63 | Role of cationic carbosilane dendrons and metallic core of functionalized gold nanoparticles in their interaction with human serum albumin. International Journal of Biological Macromolecules, 2018, 118, 1773-1780. | 7.5 | 13        |
| 64 | Phosphorus dendrimers as powerful nanoplatforms for drug delivery, as fluorescent probes and for<br>liposome interaction studies: A concise overview. European Journal of Medicinal Chemistry, 2020, 208,<br>112788.  | 5.5 | 13        |
| 65 | A new application of inorganic sorbent for biomolecules: IMAC practice of Fe3+-nano flowers for DNA separation. Materials Science and Engineering C, 2020, 113, 111020.                                               | 7.3 | 13        |
| 66 | Stability of Dendriplexes Formed by Anti-HIV Genetic Material and Poly(propylene imine) Dendrimers in the Presence of Glucosaminoglycans. Journal of Physical Chemistry B, 2012, 116, 14525-14532.                    | 2.6 | 11        |
| 67 | Hybrid phosphorus–viologen dendrimers as new soft nanoparticles: design and properties. Organic<br>Chemistry Frontiers, 2021, 8, 4607-4622.                                                                           | 4.5 | 11        |
| 68 | Aligned collagen–GAG matrix as a 3D substrate for Schwann cell migration and dendrimer-based gene<br>delivery. Journal of Materials Science: Materials in Medicine, 2014, 25, 1979-1989.                              | 3.6 | 10        |
| 69 | Interaction between dendrimers and regulatory proteins. Comparison of effects of carbosilane and carbosilane–viologen–phosphorus dendrimers. RSC Advances, 2016, 6, 97546-97554.                                      | 3.6 | 10        |
| 70 | Dendronization of gold nanoparticles decreases their effect on human alpha-1-microglobulin.<br>International Journal of Biological Macromolecules, 2018, 108, 936-941.                                                | 7.5 | 10        |
| 71 | Prospects of Cationic Carbosilane Dendronized Gold Nanoparticles as Non-viral Vectors for Delivery of Anticancer siRNAs siBCL-xL and siMCL-1. Pharmaceutics, 2021, 13, 1549.                                          | 4.5 | 10        |
| 72 | Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin—Constants<br>and mechanisms. Colloids and Surfaces B: Biointerfaces, 2017, 155, 11-16.                                         | 5.0 | 9         |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles. International Journal of Pharmaceutics, 2020, 573, 118867.                           | 5.2 | 9         |
| 74 | Generation Dependent Effects and Entrance to Mitochondria of Hybrid Dendrimers on Normal and<br>Cancer Neuronal Cells In Vitro. Biomolecules, 2020, 10, 427.                                   | 4.0 | 9         |
| 75 | THE EFFECT OF OXIDATIVE STRESS INDUCED BY t-BUTYL HYDROPEROXIDE ON THE STRUCTURAL DYNAMICS OF MEMBRANE PROTEINS OF CHINESE HAMSTER FIBROBLASTS. Cell Biology International, 1999, 23, 345-350. | 3.0 | 8         |
| 76 | Complex formation between endogenous toxin bilirubin and polyamidoamine dendrimers: A<br>spectroscopic study. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1021-1026.         | 2.4 | 8         |
| 77 | Impact of maltose modified poly(propylene imine) dendrimers on liver alcohol dehydrogenase (LADH)<br>internal dynamics and structure. New Journal of Chemistry, 2012, 36, 1992.                | 2.8 | 8         |
| 78 | Combined therapy of ruthenium dendrimers and anti-cancer drugs against human leukemic cells.<br>Dalton Transactions, 2021, 50, 9500-9511.                                                      | 3.3 | 8         |
| 79 | Acidosis, magnesium and acetylsalicylic acid: Effects on thrombin. Spectrochimica Acta - Part A:<br>Molecular and Biomolecular Spectroscopy, 2013, 104, 158-164.                               | 3.9 | 7         |
| 80 | Recent Patents in Dendrimers for Nanomedicine: Evolution 2014. Recent Patents on Nanomedicine, 2014, 4, 25-31.                                                                                 | 0.5 | 7         |
| 81 | Effect of acetylsalicylic acid on the current–voltage characteristics of planar lipid membranes.<br>Biophysical Chemistry, 2009, 142, 27-33.                                                   | 2.8 | 6         |
| 82 | Phosphorus-containing nanoparticles: biomedical patents review. Expert Opinion on Therapeutic<br>Patents, 2015, 25, 539-548.                                                                   | 5.0 | 6         |
| 83 | The Interaction between Polycationic Poly-Lysine Dendrimers and Charged and Neutral Fluorescent<br>Probes. Journal of Fluorescence, 2006, 17, 73-79.                                           | 2.5 | 5         |
| 84 | <title>Tryptophan phosphorescence as a monitor of flexibility of membrane proteins in cells</title> . Proceedings of SPIE, 1997, , .                                                           | 0.8 | 4         |
| 85 | The influence of heterocyclic compound-PAMAM dendrimer complexes on evoked electrical responses in slices of hypoxic brain tissue. Cellular and Molecular Biology Letters, 2014, 19, 243-8.    | 7.0 | 4         |
| 86 | Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimers. Colloids and Surfaces B: Biointerfaces, 2019, 179, 226-232.            | 5.0 | 4         |
| 87 | First protein affinity application of Cu2+-bound pure inorganic nanoflowers. Polymer Bulletin, 2022, 79, 3233-3251.                                                                            | 3.3 | 4         |
| 88 | Blood Compatibility of Amphiphilic Phosphorous Dendrons—Prospective Drug Nanocarriers.<br>Biomedicines, 2021, 9, 1672.                                                                         | 3.2 | 4         |
| 89 | Phosphorescence of Tryptophan Residues of Proteins at Room Temperature. Journal of Applied Spectroscopy, 2002, 69, 213-219.                                                                    | 0.7 | 3         |
| 90 | Slow internal dynamics of membrane proteins in mechanisms of protease-induced aggregation of platelets. Cell Biology International, 2003, 27, 571-578.                                         | 3.0 | 3         |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The effects of magnesium, acetylsalicylic acid, and emoxypine on platelet aggregation. Biophysics<br>(Russian Federation), 2014, 59, 900-903.                                                                         | 0.7 | 3         |
| 92  | Comparison of the effects of dendrimer, micelle and silver nanoparticles on phospholipase A2 structure. Journal of Biotechnology, 2021, 331, 48-52.                                                                   | 3.8 | 3         |
| 93  | Ultrasonic Formation of Fe <sub>3</sub> O <sub>4</sub> -Reduced Graphene Oxide–Salicylic Acid<br>Nanoparticles with Switchable Antioxidant Function. ACS Biomaterials Science and Engineering, 2022,<br>8, 1181-1192. | 5.2 | 3         |
| 94  | Dendrimers in Anti-HIV Therapy. , 0, , .                                                                                                                                                                              |     | 2         |
| 95  | Cationic Carbosilane Dendrimers as Nonâ€viral Vectors of Nucleic Acids (Oligonucleotide or siRNA) for<br>Gene Therapy Purposes. , 2013, , 40-55.                                                                      |     | 2         |
| 96  | Recombination Prolonged Luminescence of Indole and Tryptophan in a Solution at Room Temperature.<br>Journal of Applied Spectroscopy, 2003, 70, 270-275.                                                               | 0.7 | 1         |
| 97  | Room Temperature Phosphorescence of the Membrane Proteins of Human Erythrocytes. Journal of<br>Applied Spectroscopy, 2003, 70, 385-390.                                                                               | 0.7 | 1         |
| 98  | Differences between Cu- and Fe–Cu nanoflowers in their interactions with fluorescent probes ANS and Fura-2 and proteins albumin and thrombin. Polymer Bulletin, 2022, 79, 5247-5259.                                  | 3.3 | 1         |
| 99  | Phosphorescent Analysis of Lipid Peroxidation Products in vitro and in situ. , 1999, , 349-350.                                                                                                                       |     | 1         |
| 100 | Room Temperature Tryptophan Phosphorescence as monitor of internal dynamics of isolated human erythrocyte membranes proteins. , 1999, , 21-22.                                                                        |     | 1         |
| 101 | SMALL NON-CODING RNA: BIOLOGICAL FUNCTIONS AND BIOMEDICAL APPLICATION. Vestsi Natsyianal'nai<br>Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2018, 63, 232-244.                                               | 0.1 | 1         |
| 102 | Engineered phosphorus dendrimers as powerful non-viral nanoplatforms for gene delivery: a great hope for the future of cancer therapeutics. Exploration of Targeted Anti-tumor Therapy, 0, , 50-61.                   | 0.8 | 1         |
| 103 | Mobility of Chromophores Absorbing Light in the 320–420 nm Range in Transparent and Cataract Lens<br>Tissue. Journal of Applied Spectroscopy, 2014, 81, 820-826.                                                      | 0.7 | 0         |
| 104 | Circulating tumor cells and circulating cancer stem cells and their detection by the method of flow<br>cytometry. Vestsi Natsyianal'nai Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2021, 66, 370-384.       | 0.1 | 0         |
| 105 | Phosphorus Dendrimers as Vectors for Gene Therapy in Cancer. , 2018, , 227-244.                                                                                                                                       |     | 0         |
| 106 | Hybride metall-organic nanoflowers and their applications in biotechnology. Vestsi Natsyianal'nai<br>Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2019, 64, 374-384.                                          | 0.1 | 0         |
| 107 | Interactions of dendrimers and dendronized nanoparticles with proteins. Vestsi Natsyianal'nai<br>Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2020, 65, 497-509.                                              | 0.1 | 0         |
| 108 | Interaction of polyamidoamine dendrimers and amphiphylic dendrons with lipid membranes. Vestsi<br>Natsyianal'nai Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2021, 66, 497-512.                              | 0.1 | 0         |