Morena Casartelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3072251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Midgut microbiota and host immunocompetence underlie <i>Bacillus thuringiensis</i> killing mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9486-9491.	7.1	144
2	Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 305-324.	4.9	140
3	The Intestinal Microbiota of Hermetia illucens Larvae Is Affected by Diet and Shows a Diverse Composition in the Different Midgut Regions. Applied and Environmental Microbiology, 2019, 85, .	3.1	134
4	Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnology Advances, 2018, 36, 818-838.	11.7	107
5	Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell and Tissue Research, 2007, 330, 345-359.	2.9	91
6	The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell and Tissue Research, 2019, 377, 505-525.	2.9	79
7	Structural and Functional Characterization of Hermetia illucens Larval Midgut. Frontiers in Physiology, 2019, 10, 204.	2.8	76
8	A First Attempt to Produce Proteins from Insects by Means of a Circular Economy. Animals, 2019, 9, 278.	2.3	69
9	Effects of <i>Trichoderma viride</i> chitinases on the peritrophic matrix of Lepidoptera. Pest Management Science, 2016, 72, 980-989.	3.4	58
10	Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis. Scientific Reports, 2016, 6, 32939.	3.3	57
11	Cell death during complete metamorphosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190065.	4.0	55
12	The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium. Cell and Tissue Research, 2015, 361, 509-528.	2.9	53
13	Black Soldier Fly Larvae Adapt to Different Food Substrates through Morphological and Functional Responses of the Midgut. International Journal of Molecular Sciences, 2020, 21, 4955.	4.1	51
14	The digestive system of the adult Hermetia illucens (Diptera: Stratiomyidae): morphological features and functional properties. Cell and Tissue Research, 2019, 378, 221-238.	2.9	45
15	Unexpected similarity of intestinal sugar absorption by SGLT1 and apical GLUT2 in an insect (Aphidius) Tj ETQq1 Comparative Physiology, 2007, 292, R2284-R2291.	1 0.78431 1.8	.4 rgBT /Ove 42
16	Functional analysis of an immune gene of Spodoptera littoralis by RNAi. Journal of Insect Physiology, 2014, 64, 90-97.	2.0	40
17	Absorption of albumin by the midgut of a lepidopteran larva. Journal of Insect Physiology, 2005, 51, 933-940.	2.0	37
18	Densovirus Crosses the Insect Midgut by Transcytosis and Disturbs the Epithelial Barrier Function. Journal of Virology, 2013, 87, 12380-12391.	3.4	37

MORENA CASARTELLI

#	Article	IF	CITATIONS
19	Metagenome-Sourced Microbial Chitinases as Potential Insecticide Proteins. Frontiers in Microbiology, 2019, 10, 1358.	3.5	32
20	Mechanical Processing of Hermetia illucens Larvae and Bombyx mori Pupae Produces Oils with Antimicrobial Activity. Animals, 2021, 11, 783.	2.3	30
21	Absorption of sugars and amino acids by the epidermis of Aphidius ervi larvae. Journal of Insect Physiology, 2003, 49, 1115-1124.	2.0	28
22	Functional analysis of a fatty acid binding protein produced by Aphidius ervi teratocytes. Journal of Insect Physiology, 2012, 58, 621-627.	2.0	28
23	Nutrient absorption by Aphidius ervi larvae. Journal of Insect Physiology, 2005, 51, 1183-1192.	2.0	27
24	Ingestion and effects of polystyrene nanoparticles in the silkworm Bombyx mori. Chemosphere, 2020, 257, 127203.	8.2	25
25	Estimating black soldier fly larvae biowaste conversion performance by simulation of midgut digestion. Waste Management, 2020, 112, 40-51.	7.4	24
26	The intestinal barrier in lepidopteran larvae: Permeability of the peritrophic membrane and of the midgut epithelium to two biologically active peptides. Journal of Insect Physiology, 2009, 55, 10-18.	2.0	21
27	Midgut epithelium in molting silkworm: A fine balance among cell growth, differentiation, and survival. Arthropod Structure and Development, 2016, 45, 368-379.	1.4	20
28	A megalin-like receptor is involved in protein endocytosis in the midgut of an insect (<i>Bombyx) Tj ETQq0 0 0 rg Physiology, 2008, 295, R1290-R1300.</i>	gBT /Overl 1.8	ock 10 Tf 50 3 18
29	An in-depth description of head morphology and mouthparts in larvae of the black soldier fly Hermetia illucens. Arthropod Structure and Development, 2020, 58, 100969.	1.4	18
30	Multiple transport pathways for dibasic amino acids in the larval midgut of the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 2001, 31, 621-632.	2.7	17
31	The paracellular pathway in the lepidopteran larval midgut: Modulation by intracellular mediators. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2006, 144, 464-473.	1.8	17
32	A viral chitinase enhances oral activity of TMOF. Insect Biochemistry and Molecular Biology, 2010, 40, 533-540.	2.7	17
33	A Virulence Factor Encoded by a Polydnavirus Confers Tolerance to Transgenic Tobacco Plants against Lepidopteran Larvae, by Impairing Nutrient Absorption. PLoS ONE, 2014, 9, e113988.	2.5	16
34	New synthesis and biological evaluation of uniflorine A derivatives: towards specific insect trehalase inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 886-892.	2.8	16
35	Substrate specificity of the brush border K+-leucine symport of Bombyx mori larval midgut. Insect Biochemistry and Molecular Biology, 2000, 30, 243-252.	2.7	15
36	The CPP Tat enhances eGFP cell internalization and transepithelial transport by the larval midgut of Bombyx mori (Lepidoptera, Bombycidae). Journal of Insect Physiology, 2011, 57, 1689-1697.	2.0	15

MORENA CASARTELLI

#	Article	IF	CITATIONS
37	Four Amino Acids of an Insect Densovirus Capsid Determine Midgut Tropism and Virulence. Journal of Virology, 2012, 86, 5937-5941.	3.4	15
38	Insights Into the Immune Response of the Black Soldier Fly Larvae to Bacteria. Frontiers in Immunology, 2021, 12, 745160.	4.8	15
39	Absorption of horseradish peroxidase in Bombyx mori larval midgut. Journal of Insect Physiology, 2007, 53, 517-525.	2.0	13
40	Bacillus thuringiensis CrylAa δ-Endotoxin Affects the K + /Amino Acid Symport in Bombyx mori Larval Midgut. Journal of Membrane Biology, 1997, 159, 209-217.	2.1	11
41	A hungry need for knowledge on the black soldier fly digestive system. Journal of Insects As Food and Feed, 2022, 8, 217-222.	3.9	11
42	Modification of the nutritional parameters and of midgut biochemical and absorptive functions induced by the IGR fenoxycarb inBombyx mori larvae. , 1998, 39, 18-35.		10
43	Role of specific activators of intestinal amino acid transport inBombyx mori larval growth and nutrition. Archives of Insect Biochemistry and Physiology, 2001, 48, 190-198.	1.5	8
44	A novel regulatory mechanism for amino acid absorption in lepidopteran larval midgut. Journal of Insect Physiology, 2002, 48, 585-592.	2.0	7
45	Manual Sampling and Video Observations: An Integrated Approach to Studying Flower-Visiting Arthropods in High-Mountain Environments. Insects, 2020, 11, 881.	2.2	6
46	Modulation of leucine absorption in the larval midgut of Bombyx mori (Lepidoptera, Bombycidae). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 129, 665-672.	1.8	5
47	Proctolin affects gut functions in lepidopteran larvae. Journal of Applied Entomology, 2010, 134, 745-753.	1.8	5
48	The Early Season Community of Flower-Visiting Arthropods in a High-Altitude Alpine Environment. Insects, 2022, 13, 393.	2.2	5
49	Leucine transport by the larval midgut of the parasitoid Aphidius ervi (Hymenoptera). Journal of Insect Physiology, 2010, 56, 165-169.	2.0	4
50	Leucine methyl ester is a powerful allosteric activator of the neutral amino acid cotransport system in Bombyx mori larval midgut. Insect Biochemistry and Molecular Biology, 2002, 32, 719-727.	2.7	2
51	Methods for Monitoring Autophagy in Silkworm Organs. Methods in Molecular Biology, 2018, 1854, 159-174.	0.9	1