Yi Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3072100/publications.pdf

Version: 2024-02-01

677142 623734 22 619 14 22 citations h-index g-index papers 22 22 22 645 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	The activation of inert NiFe Prussian Blue analogues to boost oxygen evolution reaction activity. Journal of Colloid and Interface Science, 2022, 607, 967-977.	9.4	20
2	Improved oxygen activation over metal–organic-frameworks derived and zinc-modulated Co@NC catalyst for boosting indoor gaseous formaldehyde oxidation at room temperature. Journal of Colloid and Interface Science, 2021, 601, 833-842.	9.4	11
3	Soot combustion over CeO2 catalyst: the influence of biodiesel impurities (Na, K, Ca, P) on surface chemical properties. Environmental Science and Pollution Research, 2021, 28, 26018-26029.	5.3	11
4	Defect Engineering and Synergistic Effect in Co ₃ O ₄ Catalysts for Efficient Removal of Formaldehyde at Room Temperature. Industrial & Engineering Chemistry Research, 2020, 59, 18781-18789.	3.7	20
5	Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nature Communications, 2020, 11, 3908.	12.8	172
6	Particle Size Effects in Stoichiometric Methane Combustion: Structure–Activity Relationship of Pd Catalyst Supported on Gamma-Alumina. ACS Catalysis, 2020, 10, 10339-10349.	11.2	84
7	Synthesis of a High-Stability Nanosized Pt-Loaded MgAl ₂ O ₄ Catalyst for <i>n</i> -Decane Cracking with Enhanced Activity and Durability. Industrial & Engineering Chemistry Research, 2020, 59, 4338-4347.	3.7	15
8	The preparation of Pd/CeO2–ZrO2–Al2O3 catalyst with superior structural stability: effect of zirconia incorporation method. Journal of Materials Science, 2020, 55, 9993-10008.	3.7	3
9	Key role of NO + C3H8 reaction for the elimination of NO in automobile exhaust by three-way catalyst. Environmental Science and Pollution Research, 2019, 26, 26071-26081.	5.3	4
10	Hydrogen-Rich Syngas Production by Toluene Reforming in a Microchannel Reactor Coated with Ni/MgO–Al ₂ O ₃ Multifunctional Catalysts. Industrial & mp; Engineering Chemistry Research, 2019, 58, 19794-19802.	3.7	12
11	Evolution of Pd Species for the Conversion of Methane under Operation Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 6255-6265.	3.7	14
12	Preparation of Ce0.5Zr0.5O2–Al2O3 with high-temperature sintering resistance and its supported Pd-only three-way catalyst. Journal of Materials Science, 2019, 54, 2796-2813.	3.7	7
13	Catalytic Cracking of <i>n</i> -Decane over Monometallic and Bimetallic Ptâ€"Ni/MoO ₃ /Laâ€"Al ₂ O ₃ Catalysts: Correlations of Surface Properties and Catalytic Behaviors. Industrial & Engineering Chemistry Research, 2019, 58, 1823-1833.	3.7	18
14	Bi-functional composite oxides M(Na, K)-Ni/La-Al2O3 catalysts for steam reforming of n-decane. Fuel, 2018, 212, 193-201.	6.4	25
15	Hydrogen production by catalytic steam reforming of hydrocarbon fuels over Ni/Ce–Al 2 O 3 bifunctional catalysts: Effects of SrO addition. International Journal of Hydrogen Energy, 2016, 41, 13436-13447.	7.1	35
16	Effects of M (Zr, Nb, Y) modifiers on the catalytic performance of Ni/Ce-Al2O3 bimetallic catalyst in steam reforming of n-decane. Journal of Analytical and Applied Pyrolysis, 2016, 122, 142-150.	5.5	11
17	Steam reforming of n -decane toward H 2 production over Ni/Ce-Al 2 O 3 composite catalysts: Effects of M (M = Fe, Co, Cu, Zn) promoters. Journal of Analytical and Applied Pyrolysis, 2016, 120, 238-246.	5.5	19
18	Steam reforming of hydrocarbon fuels over M (Fe, Co, Ni, Cu, Zn)–Ce bimetal catalysts supported on Al2O3. International Journal of Hydrogen Energy, 2016, 41, 10473-10482.	7.1	41

#	Article	IF	CITATION
19	Catalytic cracking of RP-3 jet fuel over wall-coated Pt/ZrO2–TiO2–Al2O3 catalysts with different Al2O3 ratios. Journal of Analytical and Applied Pyrolysis, 2015, 111, 100-107.	5.5	37
20	The performance of Pt/ZrxTixAl1–2xO2 as Kerosene cracking catalysts. Chinese Journal of Catalysis, 2014, 35, 175-184.	14.0	10
21	Catalytic Cracking of RP-3 Jet Fuel over Pt/CeO ₂ â€"Al ₂ O ₃ by Adding Cu/ZSM-5. Energy & Fuels, 2014, 28, 5382-5388.	5.1	23
22	Kerosene cracking over supported monolithic Pt catalysts: Effects of SrO and BaO promoters. Chinese Journal of Catalysis, 2013, 34, 1139-1147.	14.0	27