
Guangming Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3071978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved respond speed of thienylene-phenylene electrochromic polymer with pendent double bond structure. Dyes and Pigments, 2022, 198, 110010.	3.7	8
2	A separated type cathode photoelectrochemical aptasensor for thrombin detection based on novel organic polymer heterojunction photoelectric material. Microchemical Journal, 2022, 175, 107140.	4.5	9
3	Facile Preparation of Oxygen Vacancy WO _{3-X} @TiO _{2-X} /Poly(indole-6-carboxylic) Tj E Application. ACS Applied Energy Materials, 2022, 5, 8443-8451.	「Qq1 1 0.7 5.1	84314 rgBT 6
4	High performance multi-color prussian blue/poly(indole-5-carboxylic acid) nanocomposites with multiple layer nanosphere structure for electrochromic supercapacitor application. Journal of Alloys and Compounds, 2022, 921, 166140.	5.5	15
5	High performance organic-inorganic hybrid material with multi-color change and high energy storage capacity for intelligent supercapacitor application. Journal of Alloys and Compounds, 2021, 855, 157480.	5.5	34
6	Ultrasensitive ratiometric photoelectrochemical immunoassay for prostate specific antigen based on nanoscale heterojunction. Sensors and Actuators B: Chemical, 2021, 326, 128994.	7.8	13
7	"Signal-on―molecularly imprinting-aptamer electrochemiluminescence platform for ultrasensitive detection of thrombin. Sensors and Actuators B: Chemical, 2021, 338, 129870.	7.8	23
8	High performance electrochromic poly(5-cyanoindole)/TiO2 nanocomposite material for intelligent supercapacitor. Synthetic Metals, 2021, 277, 116785.	3.9	14
9	Novel poly(<scp>1H</scp> â€benzo[g]indole)/ <scp>TiO₂</scp> nanocomposites for highâ€performance electrochromic supercapacitor application. Journal of Polymer Science, 2021, 59, 3100-3110.	3.8	4
10	Ultrasensitive "signal-on―electrochemiluminescence immunosensor for prostate-specific antigen detection based on novel nanoprobe and poly(indole-6-carboxylic acid)/flower-like Au nanocomposite. Sensors and Actuators B: Chemical, 2020, 303, 127246.	7.8	40
11	A novel solid-state electrochromic supercapacitor with high energy storage capacity and cycle stability based on poly(5-formylindole)/WO3 honeycombed porous nanocomposites. Chemical Engineering Journal, 2020, 384, 123370.	12.7	125
12	Electrochemical doping engineering tuning of the thermoelectric performance of a π-conjugated free-standing poly(thiophene-furan) thin-film. Materials Chemistry Frontiers, 2020, 4, 597-604.	5.9	22
13	An enhanced photoelectrochemical sensor for aflatoxin B1 detection based on organic-inorganic heterojunction nanomaterial: poly(5-formylindole)/NiO. Mikrochimica Acta, 2020, 187, 467.	5.0	21
14	Highâ€performance hybrid polymer based on bis(alkoxy) ortho â€substituted para â€phenylene. Journal of Polymer Science, 2020, 58, 3370-3377.	3.8	4
15	A simple label-free photoelectrochemical aptasensor for ultrasensitive detection of thrombin. Microchemical Journal, 2020, 159, 105452.	4.5	10
16	Intelligent electrochromic-supercapacitor based on effective energy level matching poly(indole-6-carboxylicacid)/WO ₃ nanocomposites. New Journal of Chemistry, 2020, 44, 20584-20591.	2.8	27
17	An electrochemiluminescence aptasensor for the ultrasensitive detection of aflatoxin B1 based on gold nanorods/graphene quantum dots-modified poly(indole-6-carboxylic acid)/flower-gold nanocomposite. Microchemical Journal, 2020, 157, 104959.	4.5	40
18	Green synthesis of air-stable tellurium nanowires <i>via</i> biomolecule-assisted hydrothermal for thermoelectrics. Materials Advances, 2020, 1, 1125-1133.	5.4	8

GUANGMING NIE

#	Article	IF	CITATIONS
19	Solvent treatment inducing ultralong cycle stability poly(3,4â€ethylenedioxythiophene):poly(styrenesulfonic acid) fibers as bindingâ€free electrodes for supercapacitors. International Journal of Energy Research, 2020, 44, 5856-5865.	4.5	8
20	Graphene/Polymer Hybrid Fiber with Enhanced Fracture Elongation for Thermoelectric Energy Harvesting. ACS Applied Energy Materials, 2020, 3, 6165-6171.	5.1	29
21	High-performance D-A-D type electrochromic polymer with π spacer applied in supercapacitor. Chemical Engineering Journal, 2020, 390, 124572.	12.7	86
22	High Performance Multicolor Intelligent Supercapacitor and Its Quantitative Monitoring of Energy Storage Level by Electrochromic Parameters. ACS Applied Energy Materials, 2020, 3, 2727-2736.	5.1	73
23	Electrochromic polymers with multiple redox couples applied to monitor energy storage states of supercapacitors. Chemical Communications, 2020, 56, 5275-5278.	4.1	24
24	Effect of Functional Groups on the Thermoelectric Performance of Carbon Nanotubes. Journal of Electronic Materials, 2019, 48, 6978-6984.	2.2	14
25	High-Performance Asymmetric Electrochromic-Supercapacitor Device Based on Poly(indole-6-carboxylicacid)/TiO ₂ Nanocomposites. ACS Applied Materials & Interfaces, 2019, 11, 6491-6501.	8.0	117
26	Simple "signal-on―photoelectrochemical aptasensor for ultrasensitive detecting AFB1 based on electrochemically reduced graphene oxide/poly(5-formylindole)/Au nanocomposites. Biosensors and Bioelectronics, 2019, 134, 42-48.	10.1	73
27	Polyindole vertical nanowire array based electrochromic-supercapacitor difunctional device for energy storage and utilization. European Polymer Journal, 2019, 113, 29-35.	5.4	66
28	An ultrasensitive electrochemiluminescence assay for Hg2+ through graphene quantum dots and poly(5-formylindole) nanocomposite. Sensors and Actuators B: Chemical, 2019, 282, 824-830.	7.8	57
29	A graphene quantum dots based electrochemiluminescence immunosensor for carcinoembryonic antigen detection using poly(5-formylindole)/reduced graphene oxide nanocomposite. Biosensors and Bioelectronics, 2018, 101, 123-128.	10.1	99
30	Label-free photoelectrochemical immunosensing platform for detection of carcinoembryonic antigen through photoactive conducting poly(5-formylindole) nanocomposite. Biosensors and Bioelectronics, 2018, 116, 60-66.	10.1	38
31	Robust flexible WS2/PEDOT:PSS film for use in high-performance miniature supercapacitors. Journal of Electroanalytical Chemistry, 2018, 824, 136-146.	3.8	68
32	Three-Dimensional Porous Carbon Derived from Polyindole Hollow Nanospheres for High-Performance Supercapacitor Electrode. ACS Applied Energy Materials, 2018, 1, 4572-4579.	5.1	25
33	A Freeâ€standing electrochromic material of poly(5,7â€bis(2â€(3,4â€ethylenedioxy)thienyl)â€indole) and its application in electrochromic device. Journal of Polymer Science Part A, 2017, 55, 2356-2364.	2.3	17
34	Electrochemical immunosensor for the carcinoembryonic antigen based on a nanocompositeÂconsisting of reduced graphene oxide, gold nanoparticles and poly(indole-6-carboxylic) Tj ETQq	0 0500rgB1	[/Osverlock 10
35	Lowâ€potential facile electrosynthesis of freeâ€standing poly(1Hâ€benzo[g]indole) film as a yellowâ€lightâ€emitter. Journal of Polymer Science Part A, 2015, 53, 2730-2738.	2.3	6
36	Electrochemical copolymerization of 3,4-ethylenedioxythiophene and 6-cyanoindole and its	3.7	17

Electrochemical copolymerization of 3,4-ethylenedioxythiophene and 6-cyanoindole and its electrochromic property. Journal of Materials Science, 2015, 50, 1836-1847. 36

GUANGMING NIE

#	Article	IF	CITATIONS
37	High performance electrochromic devices based on a polyindole derivative, poly(1H-benzo[g]indole). Journal of Materials Chemistry C, 2015, 3, 11318-11325.	5.5	51
38	An electrochemical immunosensor for the tumor marker α-fetoprotein using a glassy carbon electrode modified with a poly(5-formylindole), single-wall carbon nanotubes, and coated with gold nanoparticles and antibody. Mikrochimica Acta, 2014, 181, 1601-1608.	5.0	17
39	Fabrication of a simple and sensitive QDs-based electrochemiluminescence immunosensor using a nanostructured composite material for the detection of tumor markers alpha-fetoprotein. Journal of Materials Chemistry B, 2014, 2, 8321-8328.	5.8	28
40	Electrochemiluminescence biosensor for Ramos cells based on a nanostructured conducting polymer composite material (PICAâ€MWNTs). Journal of Polymer Science Part A, 2013, 51, 2385-2392.	2.3	38
41	Electrochromic property of a copolymer based on 5-cyanoindole and 3,4-ethylenedioxythiophene and its application in electrochromic devices. Journal of Electroanalytical Chemistry, 2013, 700, 17-23.	3.8	46
42	Electrochemiluminescence Biosensor Based on Conducting Poly(5-formylindole) for Sensitive Detection of Ramos Cells. Biomacromolecules, 2013, 14, 834-840.	5.4	70
43	Simple Label-Free Femtomolar DNA Detection Based on a Nanostructure Composite Material: MWNT-Doped Poly(indole-6-carboxylic acid). ACS Macro Letters, 2012, 1, 1304-1307.	4.8	63
44	A novel high-quality electrochromic material from 3,4-ethylenedioxythiophene bis-substituted fluorene. Organic Electronics, 2012, 13, 2167-2176.	2.6	38
45	Synthesis and electrochromic properties of polyacrylate functionalized poly(3,4-ethylenedioxythiophene) network films. Journal of Materials Chemistry, 2012, 22, 18345.	6.7	57
46	High-Quality Inherently Organic Conducting Polymers Electrosynthesized from Fused-Ring Compounds in a New Electrolytic System Based on Boron Trifluoride Diethyl Etherate. Critical Reviews in Solid State and Materials Sciences, 2011, 36, 209-228.	12.3	44
47	Electrosynthesis of a new polyindole derivative obtained from 5-formylindole and its electrochromic properties. Journal of Materials Chemistry, 2011, 21, 13873.	6.7	57
48	Direct lowâ€potential electropolymerization of 9,10â€dihydrophenanthrene in boron trifluoride diethyl etherate. Journal of Applied Polymer Science, 2010, 117, 793-800.	2.6	15
49	A new electrochromic material from an indole derivative and its application in high-quality electrochromic devices. Electrochemistry Communications, 2010, 12, 160-163.	4.7	83
50	Facile electrochemical preparation of poly(9,9â€dichlorofluorene), a new polyfluorene derivative as green light emitter. Journal of Polymer Science Part A, 2010, 48, 1791-1799.	2.3	7
51	Label-free DNA detection based on a novel nanostructured conducting poly(indole-6-carboxylic acid) films. Sensors and Actuators B: Chemical, 2009, 139, 592-597.	7.8	53
52	A novel polyfluorene derivative electrodeposited by direct anodic oxidation of 9-bromofluorene in boron trifluoride diethyl etherate and trifluoroacetic acid. Journal of Electroanalytical Chemistry, 2008, 612, 191-200.	3.8	23
53	Low-potential facile electrosyntheses of free-standing poly(5-methoxyindole) film with good fluorescence properties. Journal of Electroanalytical Chemistry, 2008, 622, 121-127.	3.8	24
54	Electrochemical copolymerization of 3,4â€ethylenedioxythiophene and 5â€methylindole and characterizations of the copolymers. Journal of Applied Polymer Science, 2008, 109, 373-381.	2.6	17

GUANGMING NIE

#	Article	IF	CITATIONS
55	Low-potential facile electrosyntheses of high-quality free-standing poly(fluorene-9-carboxylic acid) films. Electrochemistry Communications, 2008, 10, 186-189.	4.7	28
56	Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochimica Acta, 2008, 53, 8351-8358.	5.2	100
57	Electrochemical copolymerization of indole and 3-methylthiophene. Journal of Applied Polymer Science, 2007, 104, 3129-3136.	2.6	11
58	Electrosyntheses of highâ€quality polyphenanthrene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid. Journal of Polymer Science Part A, 2007, 45, 3929-3940.	2.3	13
59	Electrodeposition of poly(indole-5-carboxylic acid) in boron trifluoride diethyl etherate containing additional diethyl ether. Electrochimica Acta, 2007, 52, 7097-7106.	5.2	62
60	Low-potential electrochemical polymerization of 5-fluoroindole and characterization of its polymers. Journal of Electroanalytical Chemistry, 2007, 604, 125-132.	3.8	42
61	Electrosyntheses of high quality free-standing poly(9-fluorenone) films in boron trifluoride diethyl etherate. Electrochimica Acta, 2006, 51, 5738-5745.	5.2	44
62	Electrosyntheses of high quality poly(5-methylindole) films in mixed electrolytes of boron trifluoride diethyl etherate and diethyl ether. European Polymer Journal, 2006, 42, 1384-1395.	5.4	39
63	1H NMR spectral studies on the polymerization mechanism of indole and its derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 723-728.	3.9	55
64	Electrodeposition of High-quality Polycarbazole Films in Composite Electrolytes of Boron Trifluoride Diethyl Etherate and Ethyl Ether. Journal of Applied Electrochemistry, 2006, 36, 937-944.	2.9	30
65	Electrosyntheses and characterization of poly(5-bromoindole) in boron trifluoride diethyl etherate. Journal of Applied Polymer Science, 2006, 101, 539-547.	2.6	29
66	Electrochemical copolymerization of carbazole and 3-methylthiophene. Journal of Applied Polymer Science, 2006, 102, 1877-1885.	2.6	25
67	Electrochemical copolymerization of indole and 3,4-ethylenedioxythiophene. Journal of Materials Science, 2005, 40, 2867-2873.	3.7	57
68	Electrosyntheses of freestanding polyindole films in boron trifluoride diethyl etherate. Journal of Polymer Science Part A, 2005, 43, 1444-1453.	2.3	96