
Yuriy Pomeshchik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3071737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parkinson's disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein–induced changes in maturation and immune reactive properties. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111405119.	7.1	22
2	TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration. Cell Reports, 2021, 34, 108895.	6.4	35
3	Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Reports, 2020, 15, 256-273.	4.8	49
4	Generation of an induced pluripotent stem cell line (CSC-32) from a patient with Parkinson's disease carrying a heterozygous variation p.A53T in the SNCA gene. Stem Cell Research, 2020, 43, 101694.	0.7	2
5	Long-term interleukin-33 treatment delays disease onset and alleviates astrocytic activation in a transgenic mouse model of amyotrophic lateral sclerosis. IBRO Reports, 2019, 6, 74-86.	0.3	18
6	Generation of an induced pluripotent stem cell line (CSC-46) from a patient with Parkinson's disease carrying a novel p.R301C mutation in the GBA gene. Stem Cell Research, 2019, 34, 101373.	0.7	4
7	Generation of an induced pluripotent stem cell line (CSC-44) from a Parkinson's disease patient carrying a compound heterozygous mutation (c.823C > T and EX6 del) in the PARK2 gene. Stem Cell Research, 2018, 27, 90-94.	0.7	3
8	Generation of an induced pluripotent stem cell line (CSC-41) from a Parkinson's disease patient carrying a p.G2019S mutation in the LRRK2 gene. Stem Cell Research, 2018, 28, 44-47.	0.7	4
9	Generation of a human induced pluripotent stem cell line (CSC-42) from a patient with sporadic form of Parkinson's disease. Stem Cell Research, 2018, 27, 78-81.	0.7	3
10	Generation of an integration-free induced pluripotent stem cell line (CSC-43) from a patient with sporadic Parkinson's disease. Stem Cell Research, 2018, 27, 82-85.	0.7	2
11	Generation of a human induced pluripotent stem cell line (CSC-40) from a Parkinson's disease patient with a PINK1 p.Q456X mutation. Stem Cell Research, 2018, 27, 61-64.	0.7	1
12	Reporting on methods to generate and purify rodent and human oligodendrocytes from different sources. Stem Cell Research, 2017, 20, 58-66.	0.7	5
13	The Copper bis(thiosemicarbazone) Complex Cull(atsm) Is Protective Against Cerebral Ischemia Through Modulation of the Inflammatory Milieu. Neurotherapeutics, 2017, 14, 519-532.	4.4	42
14	Antiâ€inflammatory effects of ADAMTSâ€4 in a mouse model of ischemic stroke. Glia, 2016, 64, 1492-1507.	4.9	35
15	ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2016, 11, 10.	10.8	25
16	Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Do Not Promote Functional Recovery of Pharmacologically Immunosuppressed Mice with Contusion Spinal Cord Injury. Cell Transplantation, 2015, 24, 1799-1812.	2.5	40
17	Applications of the Keap1–Nrf2 system for gene and cell therapy. Free Radical Biology and Medicine, 2015, 88, 350-361.	2.9	41
18	Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain, Behavior, and Immunity, 2015, 44, 68-81.	4.1	105

#	Article	IF	CITATIONS
19	Does Nrf2 Gene Transfer Facilitate Recovery After Contusion Spinal Cord Injury?. Antioxidants and Redox Signaling, 2014, 20, 1313-1323.	5.4	17
20	Nrf2 Regulates Neurogenesis and Protects Neural Progenitor Cells Against AÎ ² Toxicity. Stem Cells, 2014, 32, 1904-1916.	3.2	110
21	Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2012, 9, 105.	7.2	38