Liuyong Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3071594/publications.pdf Version: 2024-02-01

LUIVONC SHI

#	Article	IF	CITATIONS
1	An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure. Micromachines, 2016, 7, 218.	2.9	45
2	The Mechanism of Size-Based Particle Separation by Dielectrophoresis in the Viscoelastic Flows. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	1.5	37
3	Dielectrophoretic choking phenomenon of a deformable particle in a convergingâ€diverging microchannel. Electrophoresis, 2018, 39, 590-596.	2.4	32
4	A novel scalable microfluidic load sensor based on electrokinetic phenomena. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	25
5	Mixing mechanism of a straight channel micromixer based on light-actuated oscillating electroosmosis in low-frequency sinusoidal AC electric field. Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	24
6	AC dielectrophoretic deformable particleâ€particle interactions and their relative motions. Electrophoresis, 2020, 41, 952-958.	2.4	20
7	Dielectrophoretic choking phenomenon in a convergingâ€diverging microchannel for Janus particles. Electrophoresis, 2019, 40, 993-999.	2.4	18
8	A novel passive micromixer with modified asymmetric lateral wall structures. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2202.	1.5	9
9	Continuous separation of microparticles based on optically induced dielectrophoresis. Microfluidics and Nanofluidics, 2022, 26, 1.	2.2	9
10	Microstructure evolution and formation mechanism of graded cemented carbide with cubic-carbide-free layer prepared with TiN or Ti(C,N) free powder mixture. International Journal of Refractory Metals and Hard Materials, 2017, 66, 198-203.	3.8	8
11	Charge Properties and Electric Field Energy Density of Functional Group-Modified Nanoparticle Interacting with a Flat Substrate. Micromachines, 2020, 11, 1038.	2.9	6
12	Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis. Micromachines, 2021, 12, 744.	2.9	6
13	Numerical Investigation of DC Dielectrophoretic Deformable Particle–Particle Interactions and Assembly. Micromachines, 2018, 9, 260.	2.9	5
14	Electrokinetic Translocation of a Deformable Nanoparticle through a Nanopore. ACS Applied Bio Materials, 2020, 3, 5160-5168.	4.6	4
15	A full-scale computational study on the electrodynamics of a rigid particle in an optically induced dielectrophoresis chip. Modern Physics Letters B, 2020, 34, 2050233.	1.9	4
16	Droplet fusion by the interplay of electric potential and converging–diverging geometry in microâ€channels. Journal of Chemical Technology and Biotechnology, 2021, 96, 448-453.	3.2	4
17	Brush Layer Charge Characteristics of a Biomimetic Polyelectrolyte-Modified Nanoparticle Surface. Langmuir, 2020, 36, 15220-15229.	3.5	4
18	Electrokinetic transport of nanoparticles in functional group modified nanopores. Chinese Chemical Letters, 2023, 34, 107667.	9.0	4

LIUYONG SHI

#	Article	IF	CITATIONS
19	The Influence of Electric Field Intensity and Particle Length on the Electrokinetic Transport of Cylindrical Particles Passing through Nanopore. Micromachines, 2020, 11, 722.	2.9	3
20	Electrokinetic translocation of a deformable nanoparticle controlled by field effect in nanopores. Electrophoresis, 2021, 42, 2197-2205.	2.4	3
21	The polarization reverse of diode-like conical nanopore under pH gradient. SN Applied Sciences, 2020, 2, 1.	2.9	2
22	The interaction between silica flat substrate and functional group–modified nanoparticles. Electrophoresis, 2022, 43, 1984-1992.	2.4	2
23	A new droplet breakup phenomenon in electrokinetic flow through a microchannel constriction. Electrophoresis, 2020, 41, 758-760.	2.4	1
24	Multiâ€particle interaction in AC electric field driven by dielectrophoresis force. Electrophoresis, 2021, 42, 2189-2196.	2.4	1