
Fumi Katsuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3071236/publications.pdf Version: 2024-02-01

FILMERATSUR

#	Article	IF	CITATIONS
1	Bottom-Up and Top-Down Attention. Neuroscientist, 2014, 20, 509-521.	3.5	283
2	Early involvement of prefrontal cortex in visual bottom-up attention. Nature Neuroscience, 2012, 15, 1160-1166.	14.8	107
3	Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Frontiers in Integrative Neuroscience, 2012, 6, 17.	2.1	73
4	Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex. Frontiers in Systems Neuroscience, 2010, 4, 12.	2.5	67
5	Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Scientific Reports, 2019, 9, 3607.	3.3	46
6	Validation of an automated sleep spindle detection method for mouse electroencephalography. Sleep, 2019, 42, .	1.1	40
7	Basal Forebrain Parvalbumin Neurons Mediate Arousals from Sleep Induced by Hypercarbia or Auditory Stimuli. Current Biology, 2020, 30, 2379-2385.e4.	3.9	35
8	Neurons with inverted tuning during the delay periods of working memory tasks in the dorsal prefrontal and posterior parietal cortex. Journal of Neurophysiology, 2012, 108, 31-38.	1.8	34
9	Age-dependent changes in prefrontal intrinsic connectivity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3853-3858.	7.1	32
10	Differences in Intrinsic Functional Organization Between Dorsolateral Prefrontal and Posterior Parietal Cortex. Cerebral Cortex, 2014, 24, 2334-2349.	2.9	30
11	Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Molecular Psychiatry, 2021, 26, 3461-3475.	7.9	26
12	Differential Processing of Isolated Object and Multi-item Pop-Out Displays in LIP and PFC. Cerebral Cortex, 2018, 28, 3816-3828.	2.9	21
13	Knockdown of GABAA alpha3 subunits on thalamic reticular neurons enhances deep sleep in mice. Nature Communications, 2022, 13, 2246.	12.8	14
14	Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus. Brain Research Bulletin, 2022, 187, 181-198.	3.0	13
15	Time Course of Functional Connectivity in Primate Dorsolateral Prefrontal and Posterior Parietal Cortex during Working Memory. PLoS ONE, 2013, 8, e81601.	2.5	12
16	Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks. European Journal of Neuroscience, 2014, 40, 2910-2921.	2.6	11
17	The dual orexinergic receptor antagonist DORA-22 improves the sleep disruption and memory impairment produced by a rodent insomnia model. Sleep, 2020, 43, .	1.1	11
18	Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Structure and Function, 2021, 226, 1755-1778.	2.3	10

#	Article	IF	CITATIONS
19	The Dual Orexin Receptor Antagonist DORA-22 Improves Mild Stress-induced Sleep Disruption During the Natural Sleep Phase of Nocturnal Rats. Neuroscience, 2021, 463, 30-44.	2.3	3