Hong-Hee Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3071224/publications.pdf

Version: 2024-02-01

394421 45 1,496 19 citations h-index papers

g-index 46 46 46 2628 docs citations times ranked citing authors all docs

315739

38

#	Article	IF	Citations
1	Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast–osteoblast coupling. EMBO Journal, 2006, 25, 5840-5851.	7.8	263
2	MicroRNA-124 regulates osteoclast differentiation. Bone, 2013, 56, 383-389.	2.9	141
3	Pathogenic roles of CXCL10 signaling through CXCR3 and TLR4 in macrophages and T cells: relevance for arthritis. Arthritis Research and Therapy, 2017, 19, 163.	3.5	104
4	Brain-type creatine kinase has a crucial role in osteoclast-mediated bone resorption. Nature Medicine, 2008, 14, 966-972.	30.7	99
5	SOD2 and Sirt3 Control Osteoclastogenesis by Regulating Mitochondrial ROS. Journal of Bone and Mineral Research, 2017, 32, 397-406.	2.8	98
6	RANKL regulates endothelial cell survival through the phosphatidylinositol 3′â€kinase/Akt signal transduction pathway. FASEB Journal, 2003, 17, 1-17.	0.5	81
7	Nrf2 is a novel regulator of bone acquisition. Bone, 2014, 63, 36-46.	2.9	74
8	Trolox Prevents Osteoclastogenesis by Suppressing RANKL Expression and Signaling. Journal of Biological Chemistry, 2009, 284, 13725-13734.	3.4	60
9	A CTGFâ€RUNX2â€RANKL Axis in Breast and Prostate Cancer Cells Promotes Tumor Progression in Bone. Journal of Bone and Mineral Research, 2020, 35, 155-166.	2.8	56
10	Stimulation of osteoclast migration and bone resorption by C–C chemokine ligands 19 and 21. Experimental and Molecular Medicine, 2017, 49, e358-e358.	7.7	44
11	NF-κB signaling regulates cell-autonomous regulation of CXCL10 in breast cancer 4T1 cells. Experimental and Molecular Medicine, 2017, 49, e295-e295.	7.7	43
12	Extracellular S100A4 negatively regulates osteoblast function by activating the NF-κB pathway. BMB Reports, 2017, 50, 97-102.	2.4	27
13	Extracellular vesicles derived from the periodontal pathogen <i>Filifactor alocis</i> induce systemic bone loss through Tollâ€ike receptor 2. Journal of Extracellular Vesicles, 2021, 10, e12157.	12.2	26
14	Trolox inhibits osteolytic bone metastasis of breast cancer through both PGE2-dependent and independent mechanisms. Biochemical Pharmacology, 2014, 91, 51-60.	4.4	25
15	Caveolin-1 Regulates Osteoclastogenesis and Bone Metabolism in a Sex-dependent Manner. Journal of Biological Chemistry, 2015, 290, 6522-6530.	3.4	25
16	Elevated Response to Type I IFN Enhances RANKL-Mediated Osteoclastogenesis in Usp18-Knockout Mice. Journal of Immunology, 2016, 196, 3887-3895.	0.8	24
17	A novel role for flotillinâ€1 in <scp>H</scp> â€ <scp>R</scp> asâ€regulated breast cancer aggressiveness. International Journal of Cancer, 2016, 138, 1232-1245.	5.1	24
18	Myristoleic acid inhibits osteoclast formation and bone resorption by suppressing the RANKL activation of Src and Pyk2. European Journal of Pharmacology, 2015, 768, 189-198.	3.5	23

#	Article	IF	Citations
19	Anti-osteoporotic activities of fucosterol from sea mustard (Undaria pinnatifida). Food Science and Biotechnology, 2011, 20, 343-347.	2.6	20
20	Notch2 signaling promotes osteoclast resorption via activation of PYK2. Cellular Signalling, 2016, 28, 357-365.	3.6	19
21	Transglutaminase 2 regulates osteoclast differentiation via a Blimp1-dependent pathway. Scientific Reports, 2017, 7, 10626.	3.3	17
22	Salt-inducible kinase 1 regulates bone anabolism via the CRTC1–CREB–Id1 axis. Cell Death and Disease, 2019, 10, 826.	6.3	17
23	S100A4 released from highly bone-metastatic breast cancer cells plays a critical role in osteolysis. Bone Research, 2019, 7, 30.	11.4	16
24	Tetraspanin 7 regulates sealing zone formation and the bone-resorbing activity of osteoclasts. Biochemical and Biophysical Research Communications, 2016, 477, 1078-1084.	2.1	15
25	<i>>Filifactor alocis</i> àêderived extracellular vesicles inhibit osteogenesis through TLR2 signaling. Molecular Oral Microbiology, 2020, 35, 202-210.	2.7	15
26	Induction of S100A4 in periodontal ligament cells enhances osteoclast formation. Archives of Oral Biology, 2015, 60, 1215-1221.	1.8	14
27	$\widehat{Gl}\pm 12$ regulates osteoclastogenesis by modulating <code><scp>NFAT</scp>c1</code> expression. Journal of Cellular and Molecular Medicine, 2018, 22, 849-860.	3.6	14
28	JN-2, a C-X-C motif chemokine receptor 3 antagonist, ameliorates arthritis progression in an animal model. European Journal of Pharmacology, 2018, 823, 1-10.	3.5	14
29	Caveolin-1 regulates osteoclast differentiation by suppressing cFms degradation. Experimental and Molecular Medicine, 2015, 47, e192-e192.	7.7	11
30	Bortezomib prevents ovariectomy-induced osteoporosis in mice by inhibiting osteoclast differentiation. Journal of Bone and Mineral Metabolism, 2018, 36, 537-546.	2.7	11
31	Mitofusin 2, a mitochondria-ER tethering protein, facilitates osteoclastogenesis by regulating the calcium-calcineurin-NFATc1 axis. Biochemical and Biophysical Research Communications, 2019, 516, 202-208.	2.1	11
32	Fluvastatin Inhibits Osteoclast Differentiation and Porphyromonas gingivalis Lipopolysaccharide-Induced Alveolar Bone Erosion in Mice. Journal of Periodontology, 2017, 88, 390-398.	3.4	10
33	The dynactin subunit DCTN1 controls osteoclastogenesis via the Cdc42/PAK2 pathway. Experimental and Molecular Medicine, 2020, 52, 514-528.	7.7	9
34	The role of S100A4 for bone metastasis in prostate cancer cells. BMC Cancer, 2021, 21, 137.	2.6	9
35	Haptoglobin Acts as a TLR4 Ligand to Suppress Osteoclastogenesis via the TLR4–IFN-β Axis. Journal of Immunology, 2019, 202, 3359-3369.	0.8	8
36	α-Tocopheryl Succinate Inhibits Osteolytic Bone Metastasis of Breast Cancer by Suppressing Migration of Cancer Cells and Receptor Activator of Nuclear Factor-PB Ligand Expression of Osteoblasts. Journal of Bone Metabolism, 2018, 25, 23.	1.3	5

#	Article	IF	CITATIONS
37	Methanol Extract of Croton Pycnanthus Benth. Inhibits Osteoclast Differentiation by Suppressing the MAPK and NF-Î ^o B Signaling Pathways. Journal of Bone Metabolism, 2014, 21, 269.	1.3	4
38	Trapidil induces osteogenesis by upregulating the signaling of bone morphogenetic proteins. Cellular Signalling, 2018, 49, 68-78.	3.6	4
39	Sphingosylphosphorylcholine blocks ovariectomyâ€induced bone loss by suppressing Ca 2+ /calmodulinâ€mediated osteoclast differentiation. Journal of Cellular and Molecular Medicine, 2021, 25, 473-483.	3.6	4
40	ST5 Positively Regulates Osteoclastogenesis via Src/Syk/calcium Signaling Pathways. Molecules and Cells, 2019, 42, 810-819.	2.6	3
41	Myeloid-Specific PTP1B Deficiency Attenuates Inflammation-Induced and Ovariectomy-Induced Bone Loss in Mice by Inhibiting Osteoclastogenesis. Journal of Bone and Mineral Research, 2020, 37, 505-514.	2.8	3
42	Characterization of the NF-κB activation induced by TR8, an osteoclastogenic tumor necrosis factor receptor family member. Archives of Pharmacal Research, 1999, 22, 454-458.	6.3	2
43	Supporting data for the effect of gamma-secretase inhibitors in osteoclast differentiation and spreading. Data in Brief, 2016, 7, 682-685.	1.0	2
44	Effects of the Lysine Methyltransferase Inhibitor AZ505 on Bone Metabolism. Journal of Bone Metabolism, 2021, 28, 297-305.	1.3	2
45	Data on the expression of CXCR3 ligands and pro-inflammatory cytokines in macrophages and CD4+ T cells after stimuli of CXCR3 ligands. Data in Brief, 2018, 18, 518-522.	1.0	O