Jun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3070754/publications.pdf

Version: 2024-02-01

		1163117	888059
18	485	8	17
papers	citations	h-index	g-index
18	18	18	772
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Plasmonic Cu _{<i>x</i>} S Nanocages for Enhanced Solar Photothermal Cell Warming. ACS Applied Bio Materials, 2022, 5, 1658-1669.	4.6	0
2	Recovery Mechanism of Endoplasmic Reticulum Revealed by Fluorescence Lifetime Imaging in Live Cells. Analytical Chemistry, 2022, 94, 5173-5180.	6.5	7
3	Surface engineered bimetallic gold/silver nanoclusters for in situ imaging of mercury ions in living organisms. Analytical and Bioanalytical Chemistry, 2022, 414, 4235-4244.	3.7	6
4	One-step synthesized amphiphilic carbon dots for the super-resolution imaging of endoplasmic reticulum in live cells. RSC Advances, 2022, 12, 19424-19430.	3.6	10
5	Tracking lipid droplet dynamics for the discrimination of cancer cells by a solvatochromic fluorescent probe. Sensors and Actuators B: Chemical, 2021, 333, 129541.	7.8	27
6	Graphene oxide composite membrane accelerates organic pollutant degradation by <i>Shewanella</i> bacteria. Water Science and Technology, 2021, 84, 1037-1047.	2.5	2
7	Revealing Sulfur Dioxide Regulation to Nucleophagy in Embryo Development by an Adaptive Coloration Probe. Analytical Chemistry, 2021, 93, 13667-13672.	6.5	6
8	A self-quenching fluorescence probe-mediated exponential isothermal amplification system for highly sensitive and specific detection of microRNAs. Chemical Communications, 2021, 57, 12599-12602.	4.1	5
9	Two-Dimensional Nanomaterials for Photoinduced Antibacterial Applications. ACS Applied Bio Materials, 2020, 3, 8188-8210.	4.6	46
10	Identification of miR-4644 as a suitable endogenous normalizer for circulating miRNA quantification in hepatocellular carcinoma. Journal of Cancer, 2020, 11, 7032-7044.	2.5	8
11	An azacyclo-localizing fluorescent probe for the specific labeling of lysosome and autolysosome. Talanta, 2020, 216, 120941.	5.5	6
12	A rapid microfluidic platform with real-time fluorescence detection system for molecular diagnosis. Biotechnology and Biotechnological Equipment, 2019, 33, 223-230.	1.3	13
13	Sticky-flares for <i>in situ</i> monitoring of human telomerase RNA in living cells. Nanoscale, 2018, 10, 9386-9392.	5.6	18
14	Dynamic mapping of spontaneously produced H ₂ S in the entire cell space and in live animals using a rationally designed molecular switch. Analyst, The, 2018, 143, 1881-1889.	3.5	13
15	Facile Growth of High-Yield Gold Nanobipyramids Induced by Chloroplatinic Acid for High Refractive Index Sensing Properties. Scientific Reports, 2016, 6, 36706.	3.3	38
16	Real-Time Discrimination and Versatile Profiling of Spontaneous Reactive Oxygen Species in Living Organisms with a Single Fluorescent Probe. Journal of the American Chemical Society, 2016, 138, 3769-3778.	13.7	253
17	Synthesis of g-C ₃ N ₄ nanosheet/Au@Ag nanoparticle hybrids as SERS probes for cancer cell diagnostics. RSC Advances, 2015, 5, 86803-86810.	3.6	24
18	Four pHâ€Dependent 1D Co ^{II} /Ni ^{II} Coordination Polymers Based on a Terphenylâ€2,2â€2,4,4â€2â€Tetracarboxylic Acid: Syntheses, Structures, and Magnetic Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2975-2980.	1.2	3