
Elisa I GarcÃ-a-LÃ³pez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3070424/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A survey of photocatalytic materials for environmental remediation. Journal of Hazardous Materials, 2012, 211-212, 3-29.	12.4	772
2	Preparation of Polycrystalline TiO2Photocatalysts Impregnated with Various Transition Metal Ions:Â Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol. Journal of Physical Chemistry B, 2002, 106, 637-645.	2.6	460
3	Advances in selective conversions by heterogeneous photocatalysis. Chemical Communications, 2010, 46, 7074.	4.1	344
4	Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today, 2002, 75, 87-93.	4.4	286
5	Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems. 2. Surface, Bulk Characterization, and 4-Nitrophenol Photodegradation in Liquidâ~'Solid Regime. Journal of Physical Chemistry B, 2001, 105, 1033-1040.	2.6	264
6	Total oxidation of propene at low temperature over Co3O4–CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Applied Catalysis A: General, 2008, 347, 81-88.	4.3	246
7	Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Applied Catalysis B: Environmental, 2018, 220, 222-233.	20.2	232
8	Photocatalytic Degradation of Acid Blue 80 in Aqueous Solutions Containing TiO2Suspensions. Environmental Science & Technology, 2001, 35, 971-976.	10.0	231
9	Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems. 1. Surface and Bulk Characterization. Journal of Physical Chemistry B, 2001, 105, 1026-1032.	2.6	221
10	Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach. Journal of the European Ceramic Society, 2009, 29, 439-450.	5.7	221
11	Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere, 2002, 49, 1223-1230.	8.2	215
12	Photocatalytic activity of transition-metal-loaded titanium(IV) oxide powders suspended in aqueous solutions: Correlation with electron–hole recombination kinetics. Physical Chemistry Chemical Physics, 2001, 3, 267-273.	2.8	192
13	Heterogeneous Photocatalysis for Selective Formation of High-Value-Added Molecules: Some Chemical and Engineering Aspects. ACS Catalysis, 2018, 8, 11191-11225.	11.2	166
14	Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 105-114.	3.9	156
15	Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4. Applied Catalysis B: Environmental, 2017, 204, 430-439.	20.2	156
16	Preparation, Characterization, and Photoactivity of Polycrystalline Nanostructured TiO2Catalysts. Journal of Physical Chemistry B, 2004, 108, 3303-3310.	2.6	155
17	Removal of drugs in aqueous systems by photoassisted degradation. Journal of Applied Electrochemistry, 2005, 35, 765-774.	2.9	125
18	Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis. Catalysis Today, 2007, 122, 118-127.	4.4	122

#	Article	IF	CITATIONS
19	Oxidation of Aromatic Alcohols in Irradiated Aqueous Suspensions of Commercial and Homeâ€Prepared Rutile TiO ₂ : A Selectivity Study. Chemistry - A European Journal, 2008, 14, 4640-4646.	3.3	122
20	Heteropolyacidâ€Based Materials as Heterogeneous Photocatalysts. European Journal of Inorganic Chemistry, 2014, 2014, 21-35.	2.0	115
21	Degradation of lincomycin in aqueous medium: Coupling of solar photocatalysis and membrane separation. Solar Energy, 2005, 79, 402-408.	6.1	111
22	Photocatalytic activity of TiO2/SiO2 systems. Journal of Hazardous Materials, 2010, 174, 707-713.	12.4	111
23	Titania Photocatalysts for Selective Oxidations in Water. ChemSusChem, 2011, 4, 1431-1438.	6.8	100
24	Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chemistry, 2006, 8, 439.	9.0	95
25	Surface characterisation of metal ions loaded TiO2 photocatalysts: structure–activity relationship. Applied Catalysis B: Environmental, 2004, 48, 223-233.	20.2	92
26	Photocatalytic formation of H2 and value-added chemicals in aqueous glucose (Pt)-TiO2 suspension. International Journal of Hydrogen Energy, 2016, 41, 5934-5947.	7.1	90
27	TRMC, XPS, and EPR Characterizations of Polycrystalline TiO2 Porphyrin Impregnated Powders and Their Catalytic Activity for 4-Nitrophenol Photodegradation in Aqueous Suspension. Journal of Physical Chemistry B, 2005, 109, 12347-12352.	2.6	87
28	Photocatalytic thin films of TiO2 formed by a sol–gel process using titanium tetraisopropoxide as the precursor. Thin Solid Films, 2008, 516, 3802-3807.	1.8	87
29	Title is missing!. Catalysis Letters, 1997, 49, 235-243.	2.6	86
30	Zn,Al hydrotalcites calcined at different temperatures: Preparation, characterization and photocatalytic activity in gas–solid regime. Journal of Molecular Catalysis A, 2011, 342-343, 83-90.	4.8	86
31	Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2Impregnated with Lanthanide Double-Decker Phthalocyanine Complexes. Journal of Physical Chemistry C, 2007, 111, 6581-6588.	3.1	85
32	Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions. Chemical Communications, 2006, , 1012.	4.1	81
33	Influence of tungsten oxide on structural and surface properties of sol–gel prepared TiO2employed for 4-nitrophenol photodegradation. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 819-829.	1.7	75
34	Oxidation of oxalate ion in aqueous suspensions of TiO2 by photocatalysis and ozonation. Catalysis Today, 2005, 107-108, 612-618.	4.4	72
35	Keggin heteropolyacid H3PW12O40 supported on different oxides for catalytic and catalytic photo-assisted propene hydration. Physical Chemistry Chemical Physics, 2013, 15, 13329.	2.8	69
36	Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct. Journal of Catalysis, 2018, 359, 212-222.	6.2	68

#	Article	IF	CITATIONS
37	Polycrystalline TiO2impregnated with cardanol-based porphyrins for the photocatalytic degradation of 4-nitrophenol. Green Chemistry, 2004, 6, 604-608.	9.0	66
38	Influence of activated carbon in TiO2 and ZnO mediated photo-assisted degradation of 2-propanol in gas–solid regime. Applied Catalysis B: Environmental, 2010, 99, 170-180.	20.2	66
39	Co ₃ O ₄ particles grown over nanocrystalline CeO ₂ : influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation. Catalysis Science and Technology, 2015, 5, 1888-1901.	4.1	63
40	Cu-substituted lanthanum ferrite perovskites: Preparation, characterization and photocatalytic activity in gas-solid regime under simulated solar light irradiation. Journal of Alloys and Compounds, 2016, 682, 686-694.	5.5	61
41	Polymeric carbon nitride (C3N4) as heterogeneous photocatalyst for selective oxidation of alcohols to aldehydes. Catalysis Today, 2018, 315, 126-137.	4.4	60
42	Photocatalytic CO2 reduction in gas–solid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar light. Catalysis Communications, 2014, 53, 38-41.	3.3	59
43	Preparation and photoactivity of nanostructured TiO2 particles obtained by hydrolysis of TiCl4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265, 23-31.	4.7	57
44	An Investigation into the Stability of Graphitic C ₃ N ₄ as a Photocatalyst for CO ₂ Reduction. Journal of Physical Chemistry C, 2018, 122, 28727-28738.	3.1	56
45	CO ₂ to Liquid Fuels: Photocatalytic Conversion in a Continuous Membrane Reactor. ACS Sustainable Chemistry and Engineering, 2018, 6, 8743-8753.	6.7	54
46	La1â~'xSrxCo1â~'yFeyO3â~'δ perovskites: Preparation, characterization and solar photocatalytic activity. Applied Catalysis B: Environmental, 2015, 178, 218-225.	20.2	53
47	Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural in aqueous suspension of polymeric carbon nitride and its adduct with H2O2 in a solar pilot plant. Catalysis Today, 2018, 315, 138-148.	4.4	47
48	Photoelectrochemical and EPR features of polymeric C3N4 and O-modified C3N4 employed for selective photocatalytic oxidation of alcohols to aldehydes. Catalysis Today, 2019, 328, 21-28.	4.4	47
49	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 18, 29-59.	2.4	46
50	Photocatalytic conversion of glucose in aqueous suspensions of heteropolyacid–TiO ₂ composites. RSC Advances, 2015, 5, 59037-59047.	3.6	46
51	CO2 reduction by C3N4-TiO2 Nafion photocatalytic membrane reactor as a promising environmental pathway to solar fuels. Applied Catalysis B: Environmental, 2019, 255, 117779.	20.2	46
52	Analytical control of photocatalytic treatments: degradation of a sulfonated azo dye. Analytical and Bioanalytical Chemistry, 2004, 378, 214-220.	3.7	44
53	TiO2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions: role of metal and macrocycle. Research on Chemical Intermediates, 2007, 33, 433-448.	2.7	44
54	Comparison between preparative methodologies of nanostructured carbon nitride and their use as selective photocatalysts in water suspension. Research on Chemical Intermediates, 2017, 43, 5153-5168.	2.7	42

#	Article	IF	CITATIONS
55	ZrO2 Based materials as photocatalysts for 2-propanol oxidation by using UV and solar light irradiation and tests for CO2 reduction. Catalysis Today, 2018, 313, 100-105.	4.4	42
56	SrTiO 3 -based perovskites: Preparation, characterization and photocatalytic activity in gas–solid regime under simulated solar irradiation. Journal of Catalysis, 2015, 321, 13-22.	6.2	41
57	Photoassisted Oxidation of the Recalcitrant Cyanuric Acid Substrate in Aqueous ZnO Suspensions. Journal of Physical Chemistry C, 2007, 111, 18025-18032.	3.1	39
58	EPR investigations of polymeric and H2O2-modified C3N4-based photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 100-113.	3.9	38
59	Photocatalytic oxidation of acetonitrile in gas–solid and liquid–solid regimes. Journal of Catalysis, 2005, 235, 209-220.	6.2	37
60	Photocatalytic CO2 Reduction in Gas-Solid Regime in the Presence of Bare, SiO2 Supported or Cu-Loaded TiO2 Samples. Current Organic Chemistry, 2013, 17, 2440-2448.	1.6	36
61	Preparation and characterization of Al2O3 supported TiO2 catalysts employed for 4-nitrophenol photodegradation in aqueous medium. Materials Chemistry and Physics, 1998, 53, 217-224.	4.0	35
62	Preparation of Sm-loaded brookite TiO2 photocatalysts. Catalysis Today, 2011, 161, 35-40.	4.4	35
63	Photocatalytic Solar Light H ₂ Production by Aqueous Glucose Reforming. European Journal of Inorganic Chemistry, 2018, 2018, 4522-4532.	2.0	34
64	Local Structure of Supported Keggin and Wells–Dawson Heteropolyacids and Its Influence on the Catalytic Activity. Journal of Physical Chemistry C, 2019, 123, 19513-19527.	3.1	34
65	Tungstophosphoric acid supported on polycrystalline TiO2 for the photodegradation of 4-nitrophenol in aqueous solution and propan-2-ol in vapour phase. Applied Catalysis A: General, 2009, 356, 172-179.	4.3	33
66	Preparation, characterization and photocatalytic activity of TiO2 impregnated with the heteropolyacid H3PW12O40: Photo-assisted degradation of 2-propanol in gas–solid regime. Applied Catalysis B: Environmental, 2009, 90, 497-506.	20.2	32
67	Supported H3PW12O40 for 2-propanol (photo-assisted) catalytic dehydration in gas-solid regime: The role of the support and of the pseudo-liquid phase in the (photo)activity. Applied Catalysis B: Environmental, 2016, 189, 252-265.	20.2	31
68	Keggin heteropolyacids supported on TiO2 used in gas-solid (photo)catalytic propene hydration and in liquid-solid photocatalytic glycerol dehydration. Catalysis Today, 2017, 281, 60-70.	4.4	30
69	Genotoxicity of citrus wastewater in prokaryotic and eukaryotic cells and efficiency of heterogeneous photocatalysis by TiO2. Journal of Photochemistry and Photobiology B: Biology, 2012, 108, 8-15.	3.8	28
70	Adsorption and photocatalytic degradation of acetonitrile: FT-IR investigation. Journal of Molecular Catalysis A, 2003, 204-205, 693-701.	4.8	27
71	Effect of Substituents on Partial Photocatalytic Oxidation of Aromatic Alcohols Assisted by Polymeric C ₃ N ₄ . ChemCatChem, 2019, 11, 2713-2724.	3.7	27
72	Influence of some aromatic and aliphatic compounds on the rate of photodegradation of phenol in aqueous suspensions of TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 89, 69-74.	3.9	25

Elisa I GarcÃa-LÃ³pez

#	Article	IF	CITATIONS
73	Photo-assisted degradation of 2-propanol in gas–solid regime by using TiO2 impregnated with heteropolyacid H3PW12O40. Catalysis Today, 2009, 144, 42-47.	4.4	25
74	Photodegradation kinetics of aniline, 4-ethylaniline, and 4-chloroaniline in aqueous suspension of polycrystalline titanium dioxide. Research on Chemical Intermediates, 2000, 26, 413-426.	2.7	24
75	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 28, 119-132.	2.4	24
76	Comparison of the photocatalytic degradation of 2-propanol in gas–solid and liquid–solid systems by using TiO2–LnPc2 hybrid powders. Catalysis Today, 2009, 143, 203-210.	4.4	24
77	Comparison between catalytic and catalytic photo-assisted propene hydration by using supported heteropolyacid. Applied Catalysis A: General, 2012, 421-422, 70-78.	4.3	23
78	Enhanced (photo)catalytic activity of Wells-Dawson (H6P2W18O62) in comparison to Keggin (H3PW12O40) heteropolyacids for 2-propanol dehydration in gas-solid regime. Applied Catalysis A: General, 2016, 528, 113-122.	4.3	23
79	Photodegradation of lincomycin in aqueous solution. International Journal of Photoenergy, 2006, 2006, 1-6.	2.5	22
80	Different approaches for the solar photocatalytic removal of micro-contaminants from aqueous environment: Titania vs. hybrid magnetic iron oxides. Catalysis Today, 2019, 328, 164-171.	4.4	20
81	Comparison of Different Photocatalytic Systems for Acetonitrile Degradation in Gas–solid Regime. Topics in Catalysis, 2005, 35, 237-244.	2.8	19
82	Paper-TiO2 composite: An effective photocatalyst for 2-propanol degradation in gas phase. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 350, 142-151.	3.9	19
83	Catalytic Dehydration of Fructose to 5-Hydroxymethylfurfural in Aqueous Medium over Nb2O5-Based Catalysts. Nanomaterials, 2021, 11, 1821.	4.1	19
84	Biological effects and photodegradation by TiO2 of terpenes present in industrial wastewater. Journal of Hazardous Materials, 2011, 185, 591-597.	12.4	18
85	Extruded expanded polystyrene sheets coated by TiO2 as new photocatalytic materials for foodstuffs packaging. Applied Surface Science, 2012, 261, 783-788.	6.1	17
86	The role of water in the photocatalytic degradation of acetonitrile and toluene in gas-solid and liquid-solid regimes. International Journal of Photoenergy, 2006, 2006, 1-12.	2.5	16
87	Selective oxidation of aromatic alcohols in the presence of C3N4 photocatalysts derived from the polycondensation of melamine, cyanuric and barbituric acids. Research on Chemical Intermediates, 2021, 47, 131-156.	2.7	16
88	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 235-240.	2.4	15
89	Photocatalytic oxidation mechanism of benzonitrile in aqueous suspensions of titanium dioxide. Catalysis Today, 2007, 129, 16-21.	4.4	15
90	C3N4 Impregnated with Porphyrins as Heterogeneous Photocatalysts for the Selective Oxidation of 5-Hydroxymethyl-2-Furfural Under Solar Irradiation. Topics in Catalysis, 2021, 64, 758-771.	2.8	15

#	Article	IF	CITATIONS
91	Kinetics of heterogeneous photocatalytic decomposition of monuron over anatase titanium dioxide powder. Research on Chemical Intermediates, 1993, 19, 839-853.	2.7	13
92	Photoactivity of nanostructured TiO2 catalysts in aqueous system and their surface acid-base, bulk and textural properties. Research on Chemical Intermediates, 2007, 33, 465-479.	2.7	13
93	Photoassisted mineralization of aromatic and aliphatic N-heterocycles in aqueous titanium dioxide suspensions and the fate of the nitrogen heteroatoms. Applied Catalysis B: Environmental, 2008, 78, 139-150.	20.2	13
94	Inorganic materials acting as heterogeneous photocatalysts and catalysts in the same reactions. Dalton Transactions, 2016, 45, 11596-11605.	3.3	12
95	Keggin heteropolyacid supported on BN and C3N4: Comparison between catalytic and photocatalytic alcohol dehydration. Materials Science in Semiconductor Processing, 2020, 112, 104987.	4.0	12
96	Heterogeneous photocatalytic materials for sustainable formation of high-value chemicals in green solvents. Materials Today Sustainability, 2021, 13, 100071.	4.1	12
97	Superparamagnetic recoverable flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic study of photo-catalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 1022-1033.	2.2	10
98	Mechanistic aspects of oxalic acid oxidation by photocatalysis and ozonation. Journal of Applied Electrochemistry, 2008, 38, 1029-1033.	2.9	9
99	Au/CeO2 Photocatalyst for the Selective Oxidation of Aromatic Alcohols in Water under UV, Visible and Solar Irradiation. Catalysts, 2021, 11, 1467.	3.5	9
100	Synthesis of ZnO–Ag2CO3–Fe3O4@rGO core–shell structure: magnetically separable photocatalyst for degradation of MB using the Box–Behnken design. Journal of Materials Science: Materials in Electronics, 2020, 31, 19554-19568.	2.2	8
101	Improved (Photo)catalytic Propene Hydration in a Gas/Solid System by Using Heteropolyacid/Oxide Composites: Electron Paramagnetic Resonance, Acidity, and Role of Water. European Journal of Inorganic Chemistry, 2017, 2017, 1900-1907.	2.0	7
102	Sustainable Recycling of Insoluble Rust Waste for the Synthesis of Iron-Containing Perovskite-Type Catalysts. ACS Omega, 2019, 4, 6994-7004.	3.5	7
103	In search of layered antimony(III) materials: synthesis and characterization of oxo-antimony(III) catecholate and further studies on antimony(III) phosphate. Materials Research Bulletin, 1998, 33, 1233-1240.	5.2	5
104	Photoactivity of shape-controlled TiO2 in gas-solid regime under solar irradiation. Catalysis Today, 2019, 328, 118-124.	4.4	5
105	Photocatalytic degradation of 4-Nitrophenol by g-C3N4-MCy: Mechanism study and kinetic modeling. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113004.	3.9	5
106	Heteropolyacids supported on boron nitride and carbon nitride for catalytic and catalytic photo-assisted alcohol dehydration. Catalysis Today, 2021, 380, 209-222.	4.4	5
107	Titania–Silica Materials for Enhanced Photocatalysis. Chemistry - A European Journal, 2015, 21, 18338-18344.	3.3	4
108	Fundamentals of photocatalysis: The role of the photocatalysts in heterogeneous photo-assisted reactions. , 2021, , 3-9.		4

Elisa I GarcÃa-LÃ³pez

#	Article	IF	CITATIONS
109	Heteropolyacid-Based Heterogeneous Photocatalysts for Environmental Application. Green Chemistry and Sustainable Technology, 2016, , 63-107.	0.7	3
110	Photocatalytic and Catalytic Reactions in Gas–Solid and in Liquid–Solid Systems. , 2019, , 153-176.		3
111	Preparation, Characterization, and Photoactivity of Polycrystalline Nanostructured TiO2 Catalysts ChemInform, 2004, 35, no.	0.0	2
112	Carbon nitride as photocatalyst in organic selective transformations. , 2020, , 437-455.		2
113	Preparation in mild conditions of photocatalytically active nanostructured TiO2 rutile. Studies in Surface Science and Catalysis, 2006, 162, 689-696.	1.5	1
114	Preparation of Photocatalytic Nanostructured TiO ₂ Thin Films. Materials Science Forum, 2008, 587-588, 795-799.	0.3	1
115	Heteropolyacid-Based Materials as Heterogeneous Photocatalysts. European Journal of Inorganic Chemistry, 2014, 2014, 2-2.	2.0	1
116	Iron oxide-based magnetic photocatalysts: Recent developments, challenges, and environmental applications. , 2021, , 235-253.		1
117	Preparation of photocatalysts by physical methodologies. , 2021, , 37-62.		1
118	Fine chemistry by TiO2 heterogeneous photocatalysis. , 2021, , 609-635.		1
119	Photocatalytic Partial Oxidation of 5-hydroxymethyl-2-furfural Under UV and Natural Solar Irradiation in Aqueous Suspension of K Containing C3N4. Journal of Photocatalysis, 2020, 1, 16-29.	0.4	1
120	Synergetic effect of oxygen vacancies and morphology of ZnO photocatalyst prepared by non-hydrolytic sol-gel route for the photo-oxidation of 2-propanol in a gas-solid system. Surfaces and Interfaces, 2022, 32, 102162.	3.0	1
121	Preparation of photocatalysts by chemical methodologies. , 2021, , 13-36.		Ο
122	Effect ofÂUrea–Hydrogen Peroxide Content on theÂPhotocatalytic Activity of Zinc Oxide Nanoparticles. Environmental Science and Engineering, 2021, , 435-439.	0.2	0
123	Heterogeneous photo-assisted catalytic hydration/dehydration reactions based on Keggin and Wells–Dawson type heteropolytungstates. , 2021, , 319-337.		0
124	Local structure of the supported Keggin and Wells–Dawson heteropolyacids and its consequence on their (photo)catalytic activity. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e284-e284.	0.1	0