List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3070345/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ ΥΙΤΑΙΙ

#	Article	IF	CITATIONS
1	Two-Membrane Cavity Optomechanics: Linear and Non-Linear Dynamics. Photonics, 2022, 9, 99.	0.9	2
2	Force Sensing in an Optomechanical System with Feedback-Controlled In-Loop Light. Physical Review Applied, 2022, 17, .	1.5	10
3	Feedback-enabled microwave quantum illumination. Quantum Science and Technology, 2022, 7, 035003.	2.6	7
4	Microwave Quantum Radar using a Josephson Traveling Wave Parametric Amplifier. , 2022, , .		6
5	Enhancement of the optomechanical coupling and Kerr nonlinearity using the Josephson capacitance of a Cooper-pair box. Physical Review B, 2022, 105, .	1.1	7
6	Dissipative Engineering of Gaussian Entangled States in Harmonic Lattices with a Single-Site Squeezed Reservoir. Physical Review Letters, 2021, 126, 020402.	2.9	17
7	Sympathetic cooling of a radio-frequency LC circuit to its ground state in an optoelectromechanical system. Physical Review A, 2021, 103, .	1.0	8
8	Absolute Determination of the Single-Photon Optomechanical Coupling Rate via a Hopf Bifurcation. Physical Review Applied, 2021, 15, .	1.5	10
9	Quantum Zeno effect in self-sustaining systems: Suppressing phase diffusion via repeated measurements. Physical Review A, 2021, 103, .	1.0	7
10	Two–membrane Cavity Optomechanics: Non–linear Dynamics And Measurement Of The Optomechanical Coupling. , 2021, , .		0
11	Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive Regime. Entropy, 2021, 23, 966.	1.1	4
12	Two-membrane cavity optomechanics: non-linear dynamics. New Journal of Physics, 2021, 23, 073013.	1.2	17
13	Silicon-nitride nanosensors toward room temperature quantum optomechanics. Journal of Applied Physics, 2021, 130, 064503.	1.1	9
14	Josephson Traveling Wave Parametric Amplifiers as non-classical light source for Microwave Quantum Illumination. Measurement: Sensors, 2021, 18, 100349.	1.3	8
15	Noise robustness of synchronization of two nanomechanical resonators coupled to the same cavity field. Physical Review A, 2020, 101, .	1.0	25
16	Probing quantum gravity effects with quantum mechanical oscillators. European Physical Journal D, 2020, 74, 1.	0.6	7
17	Nonreciprocal ground-state cooling of multiple mechanical resonators. Physical Review A, 2020, 102, .	1.0	82
18	Possibility to generate any Gaussian cluster state by a multimode squeezing transformation. Physical Review A, 2020, 102, .	1.0	4

#	Article	IF	CITATIONS
19	Microwave quantum illumination with a digital phase-conjugated receiver. , 2020, , .		6
20	Microwave quantum illumination using a digital receiver. Science Advances, 2020, 6, eabb0451.	4.7	151
21	An optomechanical heat engine with feedback-controlled in-loop light. New Journal of Physics, 2019, 21, 093051.	1.2	17
22	Multimode Opto-Electro-Mechanical Transducer for Non-Reciprocal Conversion of Radio-Frequency and Optical Signals. , 2019, , .		0
23	Multimode Cavity Optomechanics. Proceedings (mdpi), 2019, 12, 54.	0.2	3
24	Quantum correlations in optomechanical crystals. Physical Review A, 2019, 99, .	1.0	15
25	Sandwich in the Middle: Enhancing the Optomechanical Coupling. , 2019, , .		0
26	Optomechanical cooling with intracavity squeezed light. Optics Express, 2019, 27, 32427.	1.7	39
27	Two-membrane cavity optomechanics. , 2019, , .		0
28	Normal-Mode Splitting in a Weakly Coupled Optomechanical System. Physical Review Letters, 2018, 120, 073601.	2.9	45
29	Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer. Physical Review Applied, 2018, 9, .	1.5	33
30	Cavity optomechanics with feedback-controlled in-loop light. Physical Review A, 2018, 98, .	1.0	19
31	Two-membrane cavity optomechanics. New Journal of Physics, 2018, 20, 083024.	1.2	63
32	Interference-based multimode opto-electro-mechanical transducers. , 2018, , .		0
33	Enhancing Sideband Cooling by Feedback-Controlled Light. Physical Review Letters, 2017, 119, 123603.	2.9	61
34	Enhanced entanglement of two different mechanical resonators via coherent feedback. Physical Review A, 2017, 95, .	1.0	76
35	Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity. Physical Review A, 2017, 96, .	1.0	65
36	Enhancement of three-mode optomechanical interaction by feedback-controlled light. Quantum Science and Technology, 2017, 2, 034014.	2.6	20

#	Article	IF	CITATIONS
37	Optical detection of weak electrical signals with hybrid optoelectro-mechanical devices. , 2017, , .		0
38	Quantum Enhanced optomechanical cooling with squeezed light. , 2017, , .		1
39	USING VIDEO LECTURES IN E-LEARNING PLATFORM TO IMPROVE PHYSICS TEACHING AT UNIVERSITY LEVEL. , 2017, , .		1
40	High-fidelity ground state cooling of a mechanical resonator via squeezed light driving. , 2017, , .		0
41	Probing deformed commutators with micro- and nano-oscillators. , 2017, , .		0
42	Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New Journal of Physics, 2016, 18, 073040.	1.2	83
43	Microfabrication of large-area circular high-stress silicon nitride membranes for optomechanical applications. AIP Advances, 2016, 6, 065004.	0.6	41
44	Suppression of Stokes scattering and improved optomechanical cooling with squeezed light. Physical Review A, 2016, 94, .	1.0	37
45	Cavity mode frequencies and strong optomechanical coupling in two-membrane cavity optomechanics. Journal of Optics (United Kingdom), 2016, 18, 084001.	1.0	25
46	Phonon Josephson junction with nanomechanical resonators. Physical Review A, 2016, 93, .	1.0	19
47	Discriminating the effects of collapse models from environmental diffusion with levitated nanospheres. Physical Review A, 2016, 93, .	1.0	28
48	Mechanical Einstein-Podolsky-Rosen entanglement with a finite-bandwidth squeezed reservoir. Physical Review A, 2016, 93, .	1.0	31
49	Feedback control of two-mode output entanglement and steering in cavity optomechanics. Physical Review A, 2016, 94, .	1.0	27
50	Steady-state nested entanglement structures in harmonic chains with single-site squeezing manipulation. Physical Review A, 2015, 92, .	1.0	24
51	Entangling two distant nonâ€interacting microwave modes. Annalen Der Physik, 2015, 527, 139-146.	0.9	20
52	Generation and detection of large and robust entanglement between two different mechanical resonators in cavity optomechanics. New Journal of Physics, 2015, 17, 103037.	1.2	85
53	Microwave Quantum Illumination. Physical Review Letters, 2015, 114, 080503.	2.9	348
54	Probing deformed commutators with macroscopic harmonic oscillators. Nature Communications, 2015, 6, 7503.	5.8	116

#	Article	IF	CITATIONS
55	Large distance continuous variable communication with concatenated swaps. Physica Scripta, 2015, 90, 074055.	1.2	16
56	Entanglement and squeezing of continuous-wave stationary light. New Journal of Physics, 2015, 17, 043025.	1.2	26
57	Quantum phase gate for optical qubits with cavity quantum optomechanics. Optics Express, 2015, 23, 7786.	1.7	21
58	More nonlocality with less entanglement in a tripartite atomâ€optomechanical system. Annalen Der Physik, 2015, 527, 147-155.	0.9	29
59	Nonclassical States of Light and Mechanics. , 2014, , 25-56.		8
60	Prospect of detecting single-photon-force effects in cavity optomechanics. Physical Review A, 2014, 89,	1.0	10
61	Reservoir engineering of a mechanical resonator: generating a macroscopic superposition state and monitoring its decoherence. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 045502.	0.6	28
62	Continuous-variable-entanglement swapping and its local certification: Entangling distant mechanical modes. Physical Review A, 2014, 89, .	1.0	28
63	Robust stationary mechanical squeezing in a kicked quadratic optomechanical system. Physical Review A, 2014, 89, .	1.0	101
64	Frequency-noise cancellation in optomechanical systems for ponderomotive squeezing. Physical Review A, 2014, 89, .	1.0	29
65	Enhancing the Entanglement by Negative Feedback. , 2014, , .		0
66	Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment. Journal of Optics (United Kingdom), 2013, 15, 025704.	1.0	47
67	Optical single photons on-demand teleported from microwave cavities. Physica Scripta, 2013, T153, 014004.	1.2	0
68	Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Physical Review A, 2013, 88, .	1.0	194
69	Quantum interface between optics and microwaves with optomechanics. , 2013, , .		0
70	Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. , 2013, , .		1
71	Generation of two-mode entangled states by quantum reservoir engineering. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 224001.	0.6	21
72	Entanglement swapping with local certification: Application to remote micromechanical resonators. , 2013, , .		0

#	Article	IF	CITATIONS
73	A reversible optical to microwave quantum interface. , 2012, , .		1
74	Optomechanical sideband cooling of a thin membrane within a cavity. New Journal of Physics, 2012, 14, 095015.	1.2	49
75	Reversible Optical-to-Microwave Quantum Interface. Physical Review Letters, 2012, 109, 130503.	2.9	222
76	Quantum optomechanics of a multimode system coupled via a photothermal and a radiation pressure force. Physical Review A, 2012, 86, .	1.0	14
77	Entanglement Swapping with Local Certification: Application to Remote Micromechanical Resonators. Physical Review Letters, 2012, 109, 143601.	2.9	62
78	Quantum dynamics of an optical cavity coupled to a thin semitransparent membrane: Effect of membrane absorption. Physical Review A, 2011, 84, .	1.0	46
79	Feedback-assisted ponderomotive squeezing. Comptes Rendus Physique, 2011, 12, 848-859.	0.3	6
80	Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Physical Review A, 2011, 84, .	1.0	168
81	Effect of phase noise on the generation of stationary entanglement in cavity optomechanics. Physical Review A, 2011, 84, .	1.0	62
82	Suppression of polarization decoherence for traveling light pulses via bang-bang dynamical decoupling. Physical Review A, 2011, 83, .	1.0	14
83	Open-loop and closed-loop control of flying qubits. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 154005.	0.6	5
84	Quantum dynamics of a vibrational mode of a membrane within an optical cavity. , 2011, , .		2
85	Implementation of a three-qubit quantum error-correction code in a cavity-QED setup. Physical Review A, 2010, 82, .	1.0	6
86	Compensating the Noise of a Communication Channel via Asymmetric Encoding of Quantum Information. Physical Review Letters, 2010, 105, 140504.	2.9	4
87	Engineering atomic quantum reservoirs for photons. Physical Review A, 2010, 81, .	1.0	66
88	Continuous-variable entanglement purification with atomic systems. Journal of the Optical Society of America B: Optical Physics, 2010, 27, A198.	0.9	5
89	Entanglement Purification with Hybrid Systems. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, , 189-199.	0.2	0
90	Sub-Planck-scale structures in a vibrating molecule in the presence of decoherence. Physical Review A, 2009, 79, .	1.0	22

#	Article	IF	CITATIONS
91	Sub-Planck-scale structures in the Pöschl-Teller potential and their sensitivity to perturbations. Physical Review A, 2009, 80, .	1.0	27
92	Chapter 2 Quantum Effects in Optomechanical Systems. Advances in Atomic, Molecular and Optical Physics, 2009, 57, 33-86.	2.3	159
93	Inhibition of decoherence in flying qubits. Proceedings of SPIE, 2009, , .	0.8	0
94	Preface Fortschr. Phys. 11–12 /2009. Fortschritte Der Physik, 2009, 57, 1039-1039.	1.5	0
95	Experimental Inhibition of Decoherence on Flying Qubits via "Bang-Bang―Control. Physical Review Letters, 2009, 103, 040502.	2.9	73
96	Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Physical Review A, 2009, 80, .	1.0	114
97	Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Physical Review A, 2008, 77, .	1.0	475
98	Robust entanglement of a micromechanical resonator with output optical fields. Physical Review A, 2008, 78, .	1.0	283
99	Minimal qudit code for a qubit in the phase-damping channel. Physical Review A, 2008, 77, .	1.0	35
100	Emergence of atom-light-mirror entanglement inside an optical cavity. Physical Review A, 2008, 77, .	1.0	241
101	A Scheme to Entangle Nanomechanical Resonators and Microwave Cavities. , 2008, , .		0
102	Optimal fidelity of teleportation of coherent states and entanglement. Physical Review A, 2008, 78, .	1.0	34
103	Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New Journal of Physics, 2008, 10, 095009.	1.2	102
104	Time-separated entangled light pulses from a single-atom emitter. New Journal of Physics, 2008, 10, 033025.	1.2	15
105	Self-cooling of a movable mirror to the ground state using radiation pressure. Physical Review A, 2008, 77, .	1.0	47
106	Entangling a nanomechanical resonator and a superconducting microwave cavity. Physical Review A, 2007, 76, .	1.0	94
107	Generation of Einstein-Podolsky-Rosen-Entangled Radiation through an Atomic Reservoir. Physical Review Letters, 2007, 98, 240401.	2.9	130
108	Optomechanical entanglement between a movable mirror and a cavity field. , 2007, , .		1

#	Article	IF	CITATIONS
109	Two-mode entangled radiation from single atoms. , 2007, , .		Ο
110	Entanglement in macroscopic optomechanical systems. Proceedings of SPIE, 2007, , .	0.8	0
111	Open-loop stochastic control of quantum coherence. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, S61-S73.	0.6	11
112	Optomechanical Entanglement between a Movable Mirror and a Cavity Field. Physical Review Letters, 2007, 98, 030405.	2.9	888
113	A cavity-QED scheme for Heisenberg-limited interferometry. Journal of Modern Optics, 2007, 54, 1551-1567.	0.6	3
114	Stationary entanglement between two movable mirrors in a classically driven Fabry–Perot cavity. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 8055-8068.	0.7	87
115	Creating and Probing Multipartite Macroscopic Entanglement with Light. Physical Review Letters, 2007, 99, 250401.	2.9	267
116	Two-Way Protocol with Imperfect Devices. Open Systems and Information Dynamics, 2007, 14, 169-178.	0.5	18
117	Quantum phase-gate operation based on nonlinear optics: Full quantum analysis. Physical Review A, 2006, 73, .	1.0	60
118	Assessment of a quantum phase-gate operation based on nonlinear optics. Physical Review A, 2006, 74, .	1.0	14
119	A proposal for the implementation of a quantum phase gate in a five-level atomic medium. Laser Physics, 2006, 16, 1491-1500.	0.6	Ο
120	Continuous variable encoding by ponderomotive interaction. European Physical Journal D, 2006, 37, 283-290.	0.6	31
121	Cross phase modulation in a five–level atomic medium: semiclassical theory. European Physical Journal D, 2006, 40, 281-296.	0.6	39
122	Generating continuous variable quantum codewords in the near-field atomic lithography. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 997-1009.	0.6	24
123	Macroscopic Entanglement by Entanglement Swapping. Physical Review Letters, 2006, 97, 150403.	2.9	152
124	Coherent generation of EPR-entangled light pulses mediated by a single trapped atom. Physical Review A, 2006, 73, .	1.0	29
125	Quantum phase gate operation based on nonlinear optics: Full quantum analysis. , 2006, , .		2
126	Entangled Light Pulses from Single Cold Atoms. Physical Review Letters, 2006, 96, 023601.	2.9	49

#	Article	IF	CITATIONS
127	Scheme for a quantum-limited force measurement with an optomechanical device. Physical Review A, 2006, 74, .	1.0	15
128	Single cold atom as efficient stationary source of EPR-entangled light. Physical Review A, 2006, 74, .	1.0	31
129	Momentum diffusion for coupled atom-cavity oscillators. Physical Review A, 2006, 74, .	1.0	14
130	Quantum Theory of a Polarization Phase Gate in an Atomic Tripod Configuration. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 99, 264.	0.2	1
131	Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback. Physical Review A, 2005, 72, .	1.0	5
132	Quantum dynamics in single-spin measurement. Physical Review B, 2005, 71, .	1.1	3
133	Conditioning two-party quantum teleportation within a three-party quantum channel. Physical Review A, 2005, 71, .	1.0	20
134	MACROSCOPIC ENTANGLEMENT. International Journal of Quantum Information, 2005, 03, 275-279.	0.6	1
135	Entangling movable mirrors in a double-cavity system. Europhysics Letters, 2005, 72, 747-753.	0.7	191
136	A PROPOSAL FOR AN OPTICAL IMPLEMENTATION OF A UNIVERSAL QUANTUM PHASE GATE. International Journal of Quantum Information, 2005, 03, 245-250.	0.6	0
137	Noise reduction in gravitational wave interferometers using feedback. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, S691-S697.	1.4	7
138	Constructing finite-dimensional codes with optical continuous variables. Europhysics Letters, 2004, 68, 323-329.	0.7	54
139	Decoherence control with fully quantum feedback schemes. Journal of Modern Optics, 2004, 51, 799-809.	0.6	8
140	Light reflection upon a movable mirror as a paradigm for continuous variable teleportation network. Journal of Modern Optics, 2004, 51, 901-912.	0.6	26
141	Polarization phase gate with a tripod atomic system. Physical Review A, 2004, 70, .	1.0	164
142	Suppression of back action noise in a double cavity system. , 2004, 5468, 46.		0
143	Force sensitivity of a cavityless optomechanical system. , 2004, , .		0
144	Stationary entanglement between macroscopic mechanical oscillators. European Physical Journal D, 2003, 22, 417-422.	0.6	20

#	Article	IF	CITATIONS
145	Bringing quantum strangeness to the macroscopic world. Fortschritte Der Physik, 2003, 51, 504-509.	1.5	Ο

147	Polarization Qubit Phase Gate in Driven Atomic Media. Physical Review Letters, 2003, 90, 197902.	2.9	184
148	Macroscopic mechanical oscillators at the quantum limit through optomechanical cooling. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1054.	0.9	51
149	Continuous variable entanglement by radiation pressure. Journal of Optics B: Quantum and Semiclassical Optics, 2003, 5, S523-S529.	1.4	14
150	Scheme for Teleportation of Quantum States onto a Mechanical Resonator. Physical Review Letters, 2003, 90, 137901.	2.9	132
151	Scheme for decoherence control in microwave cavities. Physical Review A, 2003, 67, .	1.0	22
152	Trapping and cooling single atoms with far-off-resonance intracavity doughnut modes. Physical Review A, 2003, 67, .	1.0	4
153	Characterizing the entanglement of bipartite quantum systems. Physical Review A, 2003, 67, .	1.0	174
154	Continuous-variable entanglement and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure. Physical Review A, 2003, 68, .	1.0	93
155	Optomechanical detection of weak forces. , 2003, 5111, 55.		0
156	Quantum effects versus thermal noise in optomechanical systems. , 2003, 5111, 523.		0
157	Suppressing decoherence and heating with quantum "bang-bang―controls. , 2003, , 357-358.		0
158	Mirror quiescence and high-sensitivity position measurements with feedback. Physical Review A, 2002, 65	1.0	84
159	Preserving quantum coherence via random modulation. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4, S300-S306.	1.4	5
159 160	Preserving quantum coherence via random modulation. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4, S300-S306. Stochastic control of quantum coherence. Europhysics Letters, 2002, 60, 498-504.	1.4 0.7	5
159 160 161	Preserving quantum coherence via random modulation. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4, S300-S306. Stochastic control of quantum coherence. Europhysics Letters, 2002, 60, 498-504. Nondissipative Decoherence and Entanglement in the Dynamics of a Trapped Ion. , 2002, , 419-422.	1.4 0.7	5 17 0

#	Article	IF	CITATIONS
163	Entangling Macroscopic Oscillators Exploiting Radiation Pressure. Physical Review Letters, 2002, 88, 120401.	2.9	520
164	Complete Quantum Teleportation with a Crossed-Kerr Nonlinearity. , 2002, , 383-390.		0
165	Quantum State Protection in Optical Cavities. , 2002, , 313-320.		0
166	Mysteries, Puzzles and Paradoxes in Quantum Mechanics. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4, .	1.4	2
167	A Cavity QED Source for Entangled Photons. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2001, 56, 108-116.	0.7	0
168	On the Observation of Decoherence with a Movable Mirror. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2001, 56, 140-144.	0.7	0
169	On the observation of decoherence with a movable mirror. European Physical Journal D, 2001, 13, 93-107.	0.6	7
170	Implementing the Deutsch algorithm with atoms and cavities. Optics and Spectroscopy (English) Tj ETQq0 0 0 $r_{ m g}$	gBT /Overlo	ock 10 Tf 50
171	Performance of a deterministic source of entangled photonic qubits. Journal of Optics B: Quantum and Semiclassical Optics, 2001, 3, S72-S78.	1.4	0
172	Decoherence and robustness of parity-dependent entanglement in the dynamics of a trapped ion. Journal of Optics B: Quantum and Semiclassical Optics, 2001, 3, 308-313.	1.4	4
173	Heating and decoherence suppression using decoupling techniques. Physical Review A, 2001, 65, .	1.0	98
174	Optomechanical scheme for the detection of weak impulsive forces. Physical Review A, 2001, 64, .	1.0	45
175	Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Physical Review A, 2001, 63, .	1.0	409
176	Quantum State Protection Using All-Optical Feedback. , 2001, , 204-213.		3
177	Autofeedback Scheme for SchrĶdinger Cat Preservation in Microwave Cavities. Fortschritte Der Physik, 2000, 48, 431-436.	1.5	0
178	Generating Entangled SchrĶdinger Cat States within a Parametric Oscillator. Fortschritte Der Physik, 2000, 48, 437-446.	1.5	2
179	Schrödinger-cat entangled state reconstruction in the Penning trap. New Journal of Physics, 2000, 2, 20-20.	1.2	7

180 Motional squashed states. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 190-195. 1.4 5

#	Article	IF	CITATIONS
181	Model-independent approach to nondissipative decoherence. Physical Review A, 2000, 61, .	1.0	58
182	Scalable quantum computation with cavity QED systems. Physical Review A, 2000, 62, .	1.0	39
183	Stochastic phase-space localization for a single trapped particle. Physical Review A, 2000, 61, .	1.0	22
184	Implementing scalable quantum computation with cavities. Journal of Modern Optics, 2000, 47, 2187-2197.	0.6	0
185	Non-dissipative decoherence in Rabi oscillation experiments. Journal of Modern Optics, 2000, 47, 2199-2211.	0.6	9
186	Complete Quantum Teleportation with a Kerr Nonlinearity. Physical Review Letters, 2000, 85, 445-448.	2.9	154
187	Decoherence Control for Optical Qubits. Lecture Notes in Computer Science, 1999, , 402-412.	1.0	1
188	Generating entangled superpositions of macroscopically distinguishable states within a parametric oscillator. Physical Review A, 1999, 60, 1636-1651.	1.0	18
189	Autofeedback scheme for preservation of macroscopic coherence in microwave cavities. Physical Review A, 1999, 60, 1687-1697.	1.0	27
190	Using parity kicks for decoherence control. Physical Review A, 1999, 59, 4178-4186.	1.0	253
191	Non-Markovian quantum feedback from homodyne measurements: The effect of a nonzero feedback delay time. Physical Review A, 1999, 60, 1549-1561.	1.0	43
192	Photodetection feedback for decoherence control. , 1999, , .		0
193	Chaos, thermodynamics and quantum mechanics: an application to celestial dynamics. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 249, 248-258.	0.9	6
194	Quantum-state protection in cavities. Physical Review A, 1998, 57, 4930-4944.	1.0	66
195	Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback. Physical Review Letters, 1998, 80, 688-691.	2.9	273
196	Controlling the Decoherence of a "Meter―via Stroboscopic Feedback. Physical Review Letters, 1997, 79, 2442-2445.	2.9	88
197	Generation and Detection of Linear Superpositions of Classically Distinguishable States of a Radiation Mode. International Journal of Modern Physics B, 1997, 11, 2119-2140.	1.0	3
198	Protecting schrĶdinger cat states using feedback. Journal of Modern Optics, 1997, 44, 2033-2041.	0.6	4

#	Article	IF	CITATIONS
199	Schrödinger Cat States in Quantum Optics. , 1997, , 425-429.		Ο
200	Conditional SchrĶdinger cats generation and detection by quantum non-demolition measurements. Applied Physics B: Lasers and Optics, 1997, 64, 249-257.	1.1	10
201	Protecting SchroÂ dinger cat states using feedback. Journal of Modern Optics, 1997, 44, 2033-2041.	0.6	11
202	Slowing Down the Decoherence of Quantum Bits. , 1997, , 203-211.		0
203	Wave-function collapse and objective randomness. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 224, 31-38.	0.9	5
204	Effect of feedback on the decoherence of a SchrĶdinger-cat state: A quantum trajectory description. Physical Review A, 1996, 54, 4519-4527.	1.0	49
205	All-Optical Model for the Generation and the Detection of Macroscopic Quantum Coherence. Physical Review Letters, 1996, 77, 411-415.	2.9	15
206	Quantum stochastic resonance in the dissipative two-state system. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 959-967.	0.4	0
207	Proton tunneling in symmetric H-bond. A simple microscopic model. Chemical Physics, 1995, 192, 79-88.	0.9	1
208	Spontaneous localization, environment-induced decoherence and individual-system observations. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 209, 129-136.	0.9	6
209	Comment on "Quantum Chaos in the Born-Oppenheimer Approximation― Physical Review Letters, 1995, 74, 1484-1484.	2.9	6
210	Quantum jumps as an objective process of nature. Physical Review A, 1995, 51, 4404-4414.	1.0	11
211	Macroscopic coherence via quantum feedback. Physical Review A, 1995, 51, 4913-4917.	1.0	63
212	Physical realization of an environment with squeezed quantum fluctuations via quantum-nondemolition-mediated feedback. Physical Review A, 1994, 50, 4253-4257.	1.0	55
213	Wave-function collapse and the quantum fluctuation-dissipation process. Physical Review A, 1994, 50, 967-976.	1.0	5
214	Nonlinear quantum mechanical effects: real or artefact of inaccurate approximations?. Chemical Physics, 1994, 180, 297-318.	0.9	31
215	Nonlinear SchrĶdinger equation and wave-function collapse: An unreliable consequence of the semiclassical approximation. Physical Review A, 1993, 47, 3538-3545.	1.0	23
216	IRREVERSIBILITY AND QUANTUM MACROSCOPIC EFFECTS IN CLASSICALLY CHAOTIC SYSTEMS. International Journal of Modern Physics B, 1993, 07, 1175-1205.	1.0	3

#	Article	IF	CITATIONS
217	Localization breakdown as a joint effect of nonlinear and quantum dissipation. Physical Review A, 1992, 45, 2285-2293.	1.0	16
218	Statistical mechanics of a nonlinear relaxation process. II. Dynamical properties. Physical Review A, 1991, 44, 876-883.	1.0	4
219	Statistical mechanics of a nonlinear relaxation process: Equilibrium properties. Physical Review A, 1991, 43, 2624-2631.	1.0	6
220	Spin relaxation with bistable precession. Physical Review A, 1991, 44, 1015-1021.	1.0	9
221	Classification of the extended symmetries of Fokker-Planck equations. Journal of Physics A, 1990, 23, L85-L88.	1.6	25
222	Quantum-mechanical dissipation: From the weak- to the strong-coupling limit. Physical Review A, 1990, 41, 6625-6634.	1.0	4
223	Beyond the semiclassical approximation of the discrete nonlinear SchrĶdinger equation: Collapses and revivals as a sign of quantum fluctuations. Physical Review A, 1990, 42, 4452-4461.	1.0	23
224	Nonlinear effects in quantum dissipation. Physical Review A, 1990, 42, 7091-7106.	1.0	20
225	Subdynamics, Fokker-Planck equation, and exponential decay of relaxation processes. Physical Review A, 1989, 39, 1486-1499.	1.0	47
226	Generalised symmetries of Fokker-Planck-type equations. Journal of Physics A, 1989, 22, L453-L456.	1.6	24
227	Decoherence control in optical cavities. , 0, , .		0
228	Autofeedback model for Schrodinger cat preservation. , 0, , .		0
229	Quantum state protection with quantum feedback schemes. , 0, , .		0
230	Correlated photon pairs from a single cold trapped atom. , 0, , .		0
231	Exploiting Optomechanical Interactions in Quantum Information. , 0, , 489-512.		0