
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3070080/publications.pdf Version: 2024-02-01

IÃORC C MÃ1/11 FR

#	Article	IF	CITATIONS
1	Diverse Effects of Climate, Land Use, and Insects on Dung and Carrion Decomposition. Ecosystems, 2023, 26, 397-411.	1.6	5
2	Resolving the <scp>SLOSS</scp> dilemma for biodiversity conservation: a research agenda. Biological Reviews, 2022, 97, 99-114.	4.7	48
3	Tracking the temporal dynamics of insect defoliation by highâ€resolution radar satellite data. Methods in Ecology and Evolution, 2022, 13, 121-132.	2.2	15
4	Saproxylic beetles trace deadwood and differentiate between deadwood niches before their arrival on potential hosts. Insect Conservation and Diversity, 2022, 15, 48-60.	1.4	15
5	Factors influencing the rate of formation of treeâ€related microhabitats and implications for biodiversity conservation and forest management. Journal of Applied Ecology, 2022, 59, 492-503.	1.9	21
6	Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conservation and Diversity, 2022, 15, 168-180.	1.4	26
7	Disentangling effects of climate and land use on biodiversity and ecosystem services—A multiâ€scale experimental design. Methods in Ecology and Evolution, 2022, 13, 514-527.	2.2	15
8	Forest dieback in a protected area triggers the return of the primeval forest specialist <i>Peltis grossa</i> (Coleoptera, Trogossitidae). Conservation Science and Practice, 2022, 4, e612.	0.9	7
9	Fungal fruit body assemblages are tougher in harsh microclimates. Scientific Reports, 2022, 12, 1633.	1.6	5
10	Assessment of defoliation and subsequent growth losses caused by Lymantria dispar using terrestrial laser scanning (TLS). Trees - Structure and Function, 2022, 36, 819-834.	0.9	6
11	Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. Communications Biology, 2022, 5, 57.	2.0	9
12	Surviving trees and deadwood moderate changes in soil fungal communities and associated functioning after natural forest disturbance and salvage logging. Soil Biology and Biochemistry, 2022, 166, 108558.	4.2	20
13	A replicated study on the response of spider assemblages to regional and local processes. Ecological Monographs, 2022, 92, .	2.4	6
14	Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations. Ecological Applications, 2022, 32, e2516.	1.8	10
15	Functional structure of European forest beetle communities is enhanced by rare species. Biological Conservation, 2022, 267, 109491.	1.9	16
16	Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia, 2022, 198, 825-834.	0.9	27
17	Index of biodiversity potential (IBP) versus direct species monitoring in temperate forests. Ecological Indicators, 2022, 136, 108692.	2.6	8
18	Natural disturbance regimes as a guide for sustainable forest management in Europe. Ecological Applications, 2022, 32, e2596.	1.8	23

#	Article	IF	CITATIONS
19	Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate. Frontiers in Microbiology, 2022, 13, 835274.	1.5	10
20	Interactive effects of climate and land use on pollinator diversity differ among taxa and scales. Science Advances, 2022, 8, eabm9359.	4.7	26
21	Snags, logs, stumps, and microclimate as tools optimizing deadwood enrichment for forest biodiversity. Biological Conservation, 2022, 270, 109569.	1.9	11
22	Perspectives: Key factors determining the presence of Tree-related Microhabitats: A synthesis of potential factors at site, stand and tree scales, with perspectives for further research. Forest Ecology and Management, 2022, 515, 120235.	1.4	21
23	Coverage based diversity estimates of facultative saproxylic species highlight the importance of deadwood for biodiversity. Forest Ecology and Management, 2022, 517, 120275.	1.4	16
24	A Biodiversity Boost From the Eurasian Beaver (Castor fiber) in Germany's Oldest National Park. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	11
25	Disentangling phylogenetic relations and biogeographic history within the Cucujus haematodes species group (Coleoptera: Cucujidae). Molecular Phylogenetics and Evolution, 2022, 173, 107527.	1.2	1
26	Light and Malaise traps tell different stories about the spatial variations in arthropod biomass and methodâ€specific insect abundance. Insect Conservation and Diversity, 2022, 15, 655-665.	1.4	5
27	Windthrow and salvage logging alter β-diversity of multiple species groups in a mountain spruce forest. Forest Ecology and Management, 2022, 520, 120401.	1.4	4
28	Contrasting responses of habitat conditions and insect biodiversity to pest- or climate-induced dieback in coniferous mountain forests. Forest Ecology and Management, 2021, 482, 118811.	1.4	15
29	Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multiâ€ŧaxa and multiâ€scale approach. Diversity and Distributions, 2021, 27, 439-453.	1.9	8
30	Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches. Insect Conservation and Diversity, 2021, 14, 132-143.	1.4	28
31	Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe?. Journal of Ecology, 2021, 109, 737-749.	1.9	52
32	Insights from regional and shortâ€ŧerm biodiversity monitoring datasets are valuable: a reply to Daskalova <i>et al</i> . 2021. Insect Conservation and Diversity, 2021, 14, 144-148.	1.4	22
33	Environmental policies to cope with novel disturbance regimes–steps to address a world scientists' warning to humanity. Environmental Research Letters, 2021, 16, 021003.	2.2	12
34	Global analysis reveals an environmentally driven latitudinal pattern in mushroom size across fungal species. Ecology Letters, 2021, 24, 658-667.	3.0	11
35	Ecology versus society: Impacts of bark beetle infestations on biodiversity and restorativeness in protected areas of Central Europe. Biological Conservation, 2021, 254, 108931.	1.9	26
36	Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests. Ecography, 2021, 44, 941-952.	2.1	20

#	Article	IF	CITATIONS
37	Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood. Ecology and Evolution, 2021, 11, 6881-6888.	0.8	3
38	Molecular biogeography of the fungus-dwelling saproxylic beetle Bolitophagus reticulatus indicates rapid expansion from glacial refugia. Biological Journal of the Linnean Society, 2021, 133, 766-778.	0.7	0
39	Carcasses at Fixed Locations Host a Higher Diversity of Necrophilous Beetles. Insects, 2021, 12, 412.	1.0	4
40	Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness. Ecography, 2021, 44, 1169-1179.	2.1	11
41	Choosy beetles: How host trees and southern boreal forest naturalness may determine dead wood beetle communities. Forest Ecology and Management, 2021, 487, 119023.	1.4	12
42	What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database. Journal of Animal Ecology, 2021, 90, 1934-1947.	1.3	23
43	Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Current Forestry Reports, 2021, 7, 138-165.	3.4	133
44	A new species of Tarphius Erichson, 1845 (Coleoptera: Zopheridae) from Iran. Zootaxa, 2021, 5005, 375-380.	0.2	0
45	A laboratory for conceiving Essential Biodiversity Variables (EBVs)—The â€~Data pool initiative for the Bohemian Forest Ecosystem'. Methods in Ecology and Evolution, 2021, 12, 2073-2083.	2.2	4
46	Co-occurrence patterns of tree-related microhabitats: A method to simplify routine monitoring. Ecological Indicators, 2021, 127, 107757.	2.6	8
47	Forest disturbance and salvage logging have neutral long-term effects on drinking water quality but alter biodiversity. Forest Ecology and Management, 2021, 495, 119354.	1.4	8
48	The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597, 77-81.	13.7	123
49	Relative impacts of gypsy moth outbreaks and insecticide treatments on forest resources and ecosystems: An experimental approach. Ecological Solutions and Evidence, 2021, 2, e12045.	0.8	13
50	National Forest Inventories capture the multifunctionality of managed forests in Germany. Forest Ecosystems, 2021, 8, .	1.3	16
51	Relationship of insect biomass and richness with land use along a climate gradient. Nature Communications, 2021, 12, 5946.	5.8	61
52	Traits mediate niches and coâ€occurrences of forest beetles in ways that differ among bioclimatic regions. Journal of Biogeography, 2021, 48, 3145-3157.	1.4	16
53	Hover flies: An incomplete indicator of biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	3
54	Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology, 2020, 101, e02949.	1.5	26

#	Article	IF	CITATIONS
55	Estimating retention benchmarks for salvage logging to protect biodiversity. Nature Communications, 2020, 11, 4762.	5.8	54
56	Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nature Ecology and Evolution, 2020, 4, 1204-1212.	3.4	76
57	Carcass Provisioning for Scavenger Conservation in a Temperate Forest Ecosystem. Bulletin of the Ecological Society of America, 2020, 101, e01688.	0.2	Ο
58	Restorationâ€oriented forest management affects community assembly patterns of deadwoodâ€dependent organisms. Journal of Applied Ecology, 2020, 57, 2429-2440.	1.9	17
59	The response of canopy height diversity to natural disturbances in two temperate forest landscapes. Landscape Ecology, 2020, 35, 2101-2112.	1.9	24
60	The living dead: acknowledging life after tree death to stop forest degradation. Frontiers in Ecology and the Environment, 2020, 18, 505-512.	1.9	84
61	Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: An experimental approach. Journal of Applied Ecology, 2020, 57, 2075-2085.	1.9	39
62	Carcass provisioning for scavenger conservation in a temperate forest ecosystem. Ecosphere, 2020, 11, e03063.	1.0	17
63	Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agricultural and Forest Meteorology, 2020, 291, 108066.	1.9	61
64	Interpreting insect declines: seven challenges and a way forward. Insect Conservation and Diversity, 2020, 13, 103-114.	1.4	271
65	Increasing the phylogenetic coverage for understanding broad-scale diversity gradients. Oecologia, 2020, 192, 629-639.	0.9	2
66	DNA metabarcoding for biodiversity monitoring in a national park: Screening for invasive and pest species. Molecular Ecology Resources, 2020, 20, 1542-1557.	2.2	33
67	Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos, 2020, 129, 1579-1588.	1.2	63
68	Predicting regional hotspots of phylogenetic diversity across multiple species groups. Diversity and Distributions, 2020, 26, 1305-1314.	1.9	7
69	Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Scientific Reports, 2020, 10, 1520.	1.6	18
70	Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities. Journal of Applied Ecology, 2020, 57, 1103-1112.	1.9	23
71	Ungulate management in European national parks: Why a more integrated European policy is needed. Journal of Environmental Management, 2020, 260, 110068.	3.8	33
72	A Comparison of the Formation Rates and Composition of Tree-Related Microhabitats in Beech-Dominated Primeval Carpathian and Hyrcanian Forests. Forests, 2020, 11, 144.	0.9	13

#	Article	IF	CITATIONS
73	Bark Beetle Population Dynamics in the Anthropocene: Challenges and Solutions. Trends in Ecology and Evolution, 2019, 34, 914-924.	4.2	159
74	A multitrophic perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research, 2019, 61, 1-54.	1.4	95
75	European mushroom assemblages are darker in cold climates. Nature Communications, 2019, 10, 2890.	5.8	34
76	Radar vision in the mapping of forest biodiversity from space. Nature Communications, 2019, 10, 4757.	5.8	66
77	Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191744.	1.2	22
78	Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landscape Ecology, 2019, 34, 2837-2850.	1.9	59
79	Deadwood retention in forests lowers short-term browsing pressure on silver fir saplings by overabundant deer. Forest Ecology and Management, 2019, 451, 117531.	1.4	27
80	Preventing European forest diebacks. Science, 2019, 365, 1388-1388.	6.0	25
81	Landscape-Scale Mixtures of Tree Species are More Effective than Stand-Scale Mixtures for Biodiversity of Vascular Plants, Bryophytes and Lichens. Forests, 2019, 10, 73.	0.9	27
82	Fungi associated with beetles dispersing from dead wood – Let's take the beetle bus!. Fungal Ecology, 2019, 39, 100-108.	0.7	41
83	Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Diversity and Distributions, 2019, 25, 783-796.	1.9	18
84	Reconciling pest control, nature conservation, and recreation in coniferous forests. Conservation Letters, 2019, 12, e12615.	2.8	23
85	Will I stay or will I go? Plant speciesâ€specific response and tolerance to high landâ€use intensity in temperate grassland ecosystems. Journal of Vegetation Science, 2019, 30, 674-686.	1.1	45
86	Congruent patterns of functional diversity in saproxylic beetles and fungi across European beech forests. Journal of Biogeography, 2019, 46, 1054-1065.	1.4	18
87	Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. Journal of Applied Ecology, 2019, 56, 1770-1781.	1.9	79
88	Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature, 2019, 574, 671-674.	13.7	760
89	Decadal effects of landscapeâ€wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity. Diversity and Distributions, 2019, 25, 430-441.	1.9	23
90	Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecology Letters, 2019, 22, 170-180.	3.0	92

#	Article	IF	CITATIONS
91	Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. Journal of Biogeography, 2019, 46, 70-82.	1.4	45
92	Effects of forest management on bryophyte species richness in Central European forests. Forest Ecology and Management, 2019, 432, 850-859.	1.4	41
93	Increasing disturbance demands new policies to conserve intact forest. Conservation Letters, 2019, 12, e12449.	2.8	81
94	Minimal effects on genetic structuring of a fungusâ€dwelling saproxylic beetle after recolonisation of a restored forest. Journal of Applied Ecology, 2018, 55, 2933-2943.	1.9	7
95	Dispersal ecology of deadwood organisms and connectivity conservation. Conservation Biology, 2018, 32, 535-545.	2.4	77
96	Independent effects of host and environment on the diversity of woodâ€inhabiting fungi. Journal of Ecology, 2018, 106, 1428-1442.	1.9	74
97	Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. Forest Ecology and Management, 2018, 409, 564-570.	1.4	41
98	Impacts of salvage logging on biodiversity: A metaâ€analysis. Journal of Applied Ecology, 2018, 55, 279-289.	1.9	252
99	Beauty and the beast: how a bat utilizes forests shaped by outbreaks of an insect pest. Animal Conservation, 2018, 21, 21-30.	1.5	26
100	"Primeval forest relict beetles―of Central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. Journal of Insect Conservation, 2018, 22, 15-28.	0.8	86
101	Influence of tree hollow characteristics on saproxylic beetle diversity in a managed forest. Biodiversity and Conservation, 2018, 27, 853-869.	1.2	17
102	The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 185-197.	1.1	13
103	LiDARâ€derived canopy structure supports the moreâ€individuals hypothesis for arthropod diversity in temperate forests. Oikos, 2018, 127, 814-824.	1.2	31
104	The impact of evenâ€aged and unevenâ€aged forest management on regional biodiversity of multiple taxa in European beech forests. Journal of Applied Ecology, 2018, 55, 267-278.	1.9	188
105	Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus). Remote Sensing, 2018, 10, 1972.	1.8	25
106	Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biological Conservation, 2018, 228, 70-78.	1.9	33
107	Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 2018, 9, 4355.	5.8	167
108	The diversity of saproxylic insects (Coleoptera, Heteroptera) on four tree species of the Hyrcanian forest in Iran. Journal of Insect Conservation, 2018, 22, 607-625.	0.8	7

#	Article	IF	CITATIONS
109	Dung beetle assemblages, dung removal and secondary seed dispersal: data from a large-scale, multi-site experiment in the Western Palaearctic. Frontiers of Biogeography, 2018, 10, .	0.8	6
110	Forest structure following natural disturbances and early succession provides habitat for two avian flagship species, capercaillie (Tetrao urogallus) and hazel grouse (Tetrastes bonasia). Biological Conservation, 2018, 226, 81-91.	1.9	28
111	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
112	Direct and indirect effects of land use on bryophytes in grasslands. Science of the Total Environment, 2018, 644, 60-67.	3.9	31
113	Influence of macroclimate and local conservation measures on taxonomic, functional, and phylogenetic diversities of saproxylic beetles and wood-inhabiting fungi. Biodiversity and Conservation, 2018, 27, 3119-3135.	1.2	27
114	Biodiversity along temperate forest succession. Journal of Applied Ecology, 2018, 55, 2756-2766.	1.9	175
115	Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates. A systematic review. Environmental Evidence, 2018, 7, .	1.1	79
116	The Necessity of Multitrophic Approaches in Community Ecology. Trends in Ecology and Evolution, 2018, 33, 754-764.	4.2	105
117	Key ecological research questions for Central European forests. Basic and Applied Ecology, 2018, 32, 3-25.	1.2	71
118	Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sensing of Environment, 2018, 215, 145-156.	4.6	25
119	Dung beetle assemblages, dung removal and secondary seed dispersal: data from a large-scale, multi-site experiment in the Western Palaearctic. Frontiers of Biogeography, 2018, 10, .	0.8	1
120	Effects of natural disturbances and salvage logging on biodiversity – Lessons from the Bohemian Forest. Forest Ecology and Management, 2017, 388, 113-119.	1.4	85
121	The impacts of climate change and disturbance on spatioâ€ŧemporal trajectories of biodiversity in a temperate forest landscape. Journal of Applied Ecology, 2017, 54, 28-38.	1.9	139
122	Synaptus iranicus sp. nov., a second species of the genus Synaptus Eschscholtz, 1829 from Iran (Coleoptera: Elateridae) discovered by an integrative approach. Zootaxa, 2017, 4232, 568.	0.2	2
123	The Red-belted Bracket (Fomitopsis pinicola) colonizes spruce trees early after bark beetle attack and persists. Fungal Ecology, 2017, 27, 182-188.	0.7	24
124	Protect Iran's ancient forest from logging. Science, 2017, 355, 919-919.	6.0	13
125	Small-scale positive response of terrestrial gastropods to dead-wood addition is mediated by canopy openness. Forest Ecology and Management, 2017, 396, 85-90.	1.4	8
126	On the structural and species diversity effects of bark beetle disturbance in forests during initial and advanced early-seral stages at different scales. European Journal of Forest Research, 2017, 136, 357-373.	1.1	6

#	Article	IF	CITATIONS
127	An experimental test of the habitatâ€amount hypothesis for saproxylic beetles in a forested region. Ecology, 2017, 98, 1613-1622.	1.5	75
128	Contrasting effects of grassland management modes on species-abundance distributions of multiple groups. Agriculture, Ecosystems and Environment, 2017, 237, 143-153.	2.5	26
129	Individual-tree- and stand-based development following natural disturbance in a heterogeneously structured forest: A LiDAR-based approach. Ecological Informatics, 2017, 38, 12-25.	2.3	13
130	Genetic variability and size estimates of the Eurasian otter (Lutra lutra) population in the Bohemian Forest Ecosystem. Mammalian Biology, 2017, 86, 42-47.	0.8	6
131	Bridging science and practice in conservation: Deficits and challenges from a research perspective. Basic and Applied Ecology, 2017, 24, 1-8.	1.2	25
132	Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. European Journal of Forest Research, 2017, 136, 739-766.	1.1	114
133	Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. Forest Ecology and Management, 2017, 400, 607-620.	1.4	46
134	Selective Predation of a Stalking Predator on Ungulate Prey. PLoS ONE, 2016, 11, e0158449.	1.1	21
135	Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography, 2016, 39, 689-698.	2.1	93
136	Shortâ€distance attraction of saproxylic Heteroptera to olfactory cues. Insect Conservation and Diversity, 2016, 9, 254-257.	1.4	5
137	The island rule of body size demonstrated on individual hosts: phytophagous click beetle species grow larger and predators smaller on phylogenetically isolated trees. Journal of Biogeography, 2016, 43, 1388-1399.	1.4	2
138	Small beetle, largeâ€scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. Journal of Applied Ecology, 2016, 53, 530-540.	1.9	161
139	Changes in the dominant assembly mechanism drive species loss caused by declining resources. Ecology Letters, 2016, 19, 163-170.	3.0	60
140	Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 2016, 540, 266-269.	13.7	404
141	Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biological Conservation, 2016, 204, 181-188.	1.9	61
142	Habitat availability is not limiting the distribution of the Bohemian–Bavarian lynx <i>Lynx lynx</i> population. Oryx, 2016, 50, 742-752.	0.5	26
143	Mean reproductive traits of fungal assemblages are correlated with resource availability. Ecology and Evolution, 2016, 6, 582-592.	0.8	17
144	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	1.8	117

#	Article	IF	CITATIONS
145	Green wave tracking by large herbivores: an experimental approach. Ecology, 2016, 97, 3547-3553.	1.5	45
146	Canopy closure determines arthropod assemblages in microhabitats created by windstorms and salvage logging. Forest Ecology and Management, 2016, 381, 188-195.	1.4	32
147	Mapping a â€~cryptic kingdom': Performance of lidar derived environmental variables in modelling the occurrence of forest fungi. Remote Sensing of Environment, 2016, 186, 428-438.	4.6	27
148	Protecting the Forests While Allowing Removal of Damaged Trees may Imperil Saproxylic Insect Biodiversity in the Hyrcanian Beech Forests of Iran. Conservation Letters, 2016, 9, 106-113.	2.8	19
149	Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholkaâ€Shyrokyi Luh forest, Ukraine. Insect Conservation and Diversity, 2016, 9, 559-573.	1.4	32
150	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	13.7	526
151	Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sensing of Environment, 2016, 186, 372-392.	4.6	229
152	Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122, 68-80.	4.9	41
153	What are the impacts of manipulating grazing and browsing by ungulates on plants and invertebrates in temperate and boreal forests? A systematic review protocol. Environmental Evidence, 2016, 5, .	1.1	5
154	Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. Journal of Applied Ecology, 2016, 53, 934-943.	1.9	194
155	Bark coverage and insects influence wood decomposition: Direct and indirect effects. Applied Soil Ecology, 2016, 105, 25-30.	2.1	47
156	Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest. Basic and Applied Ecology, 2016, 17, 463-470.	1.2	30
157	Bark-scratching of storm-felled trees preserves biodiversity at lower economic costs compared to debarking. Forest Ecology and Management, 2016, 364, 10-16.	1.4	36
158	Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecological Indicators, 2016, 65, 149-160.	2.6	48
159	Retention forestry and prescribed burning result in functionally different saproxylic beetle assemblages than clear-cutting. Forest Ecology and Management, 2016, 359, 51-58.	1.4	43
160	Response of bird assemblages to windstorm and salvage logging — Insights from analyses of functional guild and indicator species. Ecological Indicators, 2016, 65, 142-148.	2.6	36
161	Estimating over- and understorey canopy density of temperate mixed stands by airborne LiDAR data. Forestry, 2016, 89, 69-81.	1.2	52
162	Effects of forest management on bryophyte communities on deadwood. Nova Hedwigia, 2015, 100, 423-438.	0.2	30

#	Article	IF	CITATIONS
163	What is the impact of active management on biodiversity in boreal and temperate forests set aside for conservation or restoration? A systematic map. Environmental Evidence, 2015, 4, .	1.1	50
164	Response of mountain <i>Picea abies</i> forests to standâ€replacing bark beetle outbreaks: neighbourhood effects lead to selfâ€replacement. Journal of Applied Ecology, 2015, 52, 1402-1411.	1.9	57
165	Where Is the Extended Phenotype in the Wild? The Community Composition of Arthropods on Mature Oak Trees Does Not Depend on the Oak Genotype. PLoS ONE, 2015, 10, e0115733.	1.1	9
166	Country, Cover or Protection: What Shapes the Distribution of Red Deer and Roe Deer in the Bohemian Forest Ecosystem?. PLoS ONE, 2015, 10, e0120960.	1.1	40
167	Living in Heterogeneous Woodlands – Are Habitat Continuity or Quality Drivers of Genetic Variability in a Flightless Ground Beetle?. PLoS ONE, 2015, 10, e0144217.	1.1	10
168	Forest management and regional tree composition drive the host preference of saproxylic beetle communities. Journal of Applied Ecology, 2015, 52, 753-762.	1.9	56
169	Temporal patterns of deer–vehicle collisions consistent with deer activity pattern and density increase but not general accident risk. Accident Analysis and Prevention, 2015, 81, 143-152.	3.0	46
170	Bark Beetles Increase Biodiversity While Maintaining Drinking Water Quality. Conservation Letters, 2015, 8, 272-281.	2.8	140
171	Spatioâ€phylogenetic multispecies distribution models. Methods in Ecology and Evolution, 2015, 6, 187-197.	2.2	14
172	Effects of Natura 2000 and habitat variables used for habitat assessment on beetle assemblages in European beech forests. Insect Conservation and Diversity, 2015, 8, 193-204.	1.4	7
173	Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology, 2015, 96, 1492-1501.	1.5	75
174	Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests?. Bulletin of Entomological Research, 2015, 105, 101-109.	0.5	22
175	Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge. Biological Conservation, 2015, 191, 139-149.	1.9	218
176	Forest inventories by LiDAR data: A comparison of single tree segmentation and metric-based methods for inventories of a heterogeneous temperate forest. International Journal of Applied Earth Observation and Geoinformation, 2015, 42, 162-174.	1.4	62
177	Poor effectiveness of Natura 2000 beech forests in protecting forest-dwelling bats. Journal for Nature Conservation, 2015, 23, 53-60.	0.8	20
178	Landscape configuration is a major determinant of home range size variation. Ecosphere, 2015, 6, 1-12.	1.0	29
179	Host abundance, durability, basidiome form and phylogenetic isolation determine fungivore species richness. Biological Journal of the Linnean Society, 2015, 114, 699-708.	0.7	20
180	Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography, 2015, 38, 499-509.	2.1	95

#	Article	IF	CITATIONS
181	Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conservation Biology, 2015, 29, 382-390.	2.4	201
182	Natural regeneration determines wintering bird presence in wind-damaged coniferous forest stands independent of postdisturbance logging. Canadian Journal of Forest Research, 2015, 45, 1232-1237.	0.8	7
183	Variation in diet across an elevational gradient in the larvae of two Hydropsyche species (Trichoptera). Limnologica, 2015, 52, 83-88.	0.7	5
184	Hide and seek: extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodiversity and Conservation, 2015, 24, 2935-2952.	1.2	19
185	Creating a landscape of management: Unintended effects on the variation of browsing pressure in a national park. Forest Ecology and Management, 2015, 338, 46-56.	1.4	47
186	Multi-taxon alpha diversity following bark beetle disturbance: Evaluating multi-decade persistence of a diverse early-seral phase. Forest Ecology and Management, 2015, 338, 32-45.	1.4	46
187	Guild-specific responses of forest Lepidoptera highlight conservation-oriented forest management – Implications from conifer-dominated forests. Forest Ecology and Management, 2015, 337, 41-47.	1.4	34
188	Assessment of ecosystem integrity and service gradients across Europe using the LTER Europe network. Ecological Modelling, 2015, 295, 75-87.	1.2	88
189	New Insights into the Consequences of Post-Windthrow Salvage Logging Revealed by Functional Structure of Saproxylic Beetles Assemblages. PLoS ONE, 2014, 9, e101757.	1.1	62
190	Differential Responses of Herbivores and Herbivory to Management in Temperate European Beech. PLoS ONE, 2014, 9, e104876.	1.1	19
191	LiDAR Remote Sensing of Forest Structure and GPS Telemetry Data Provide Insights on Winter Habitat Selection of European Roe Deer. Forests, 2014, 5, 1374-1390.	0.9	53
192	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	3.3	243
193	Identification of FactorsInfluencing the Puumala Virus Seroprevalence within Its Reservoir in aMontane Forest Environment. Viruses, 2014, 6, 3944-3967.	1.5	5
194	Grazing response patterns indicate isolation of semiâ€natural European grasslands. Oikos, 2014, 123, 599-612.	1.2	31
195	Nearâ€ŧoâ€nature logging influences fungal community assembly processes in a temperate forest. Journal of Applied Ecology, 2014, 51, 939-948.	1.9	80
196	Relative heart size in two rodent species increases with elevation: reviving Hesse's rule. Journal of Biogeography, 2014, 41, 2211-2220.	1.4	14
197	Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Animal Conservation, 2014, 17, 154-162.	1.5	89
198	What is the impact of active management on biodiversity in forests set aside for conservation or restoration? A systematic review protocol. Environmental Evidence, 2014, 3, 22.	1.1	2

#	Article	IF	CITATIONS
199	Noninvasive genetic sampling allows estimation of capercaillie numbers and population structure in the Bohemian Forest. European Journal of Wildlife Research, 2014, 60, 789-801.	0.7	22
200	Soil property and management effects on grassland microbial communities across a latitudinal gradient in Germany. Applied Soil Ecology, 2014, 73, 41-50.	2.1	57
201	Phylogeographic analysis and genetic cluster recognition for the conservation of Ural Owls (Strix) Tj ETQq1 1 0.7	84314 rgE 0.5	BT /Overlock
202	Intra-annual variations in abundance and species composition of carabid beetles in a temperate forest in Northeast China. Journal of Insect Conservation, 2014, 18, 85-98.	0.8	10
203	On the gap between science and conservation implementation—A national park perspective. Basic and Applied Ecology, 2014, 15, 373-378.	1.2	12
204	Identification of 10 polymorphic microsatellite loci in the high montane gastropodSemilimax kotulaeusing high-throughput sequence data. Molluscan Research, 2014, 34, 20-24.	0.2	1
205	Influence of experimental soil disturbances on the diversity of plants in agricultural grasslands. Journal of Plant Ecology, 2014, 7, 509-517.	1.2	18
206	Changes in the community composition and trophic structure of microarthropods in sporocarps of the wood decaying fungus Fomitopsis pinicola along an altitudinal gradient. Applied Soil Ecology, 2014, 84, 16-23.	2.1	16
207	Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure. Forest Ecology and Management, 2014, 329, 166-176.	1.4	95
208	Protected areas shape the spatial distribution of a European lynx population more than 20 years after reintroduction. Biological Conservation, 2014, 177, 210-217.	1.9	35
209	Recreation shapes a "landscape of fear―for a threatened forest bird species in Central Europe. Landscape Ecology, 2014, 29, 55-66.	1.9	55
210	Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil, 2014, 382, 203-218.	1.8	149
211	Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia, 2014, 175, 1291-1300.	0.9	40
212	Airborne LiDAR reveals context dependence in the effects of canopy architecture on arthropod diversity. Forest Ecology and Management, 2014, 312, 129-137.	1.4	44
213	Wood resource and not fungi attract earlyâ€successional saproxylic species of <i>Heteroptera –</i> an experimental approach. Insect Conservation and Diversity, 2014, 7, 533-542.	1.4	24
214	Assessing Biodiversity by Airborne Laser Scanning. Managing Forest Ecosystems, 2014, , 357-374.	0.4	18
215	Resource-Mediated Indirect Effects of Grassland Management on Arthropod Diversity. PLoS ONE, 2014, 9, e107033.	1.1	42
216	Implications from largeâ€scale spatial diversity patterns of saproxylic beetles for the conservation of European Beech forests. Insect Conservation and Diversity, 2013, 6, 162-169.	1.4	51

#	Article	IF	CITATIONS
217	Evidence-Based Knowledge Versus Negotiated Indicators for Assessment of Ecological Sustainability: The Swedish Forest Stewardship Council Standard as a Case Study. Ambio, 2013, 42, 229-240.	2.8	35
218	High plant species richness indicates management-related disturbances rather than the conservation status of forests. Basic and Applied Ecology, 2013, 14, 496-505.	1.2	102
219	Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?. Agriculture, Ecosystems and Environment, 2013, 177, 1-9.	2.5	40
220	From ground to above canopy—Bat activity in mature forests is driven by vegetation density and height. Forest Ecology and Management, 2013, 306, 179-184.	1.4	82
221	Ponds in acidic mountains are more important for bats in providing drinking water than insect prey. Journal of Zoology, 2013, 290, 302-308.	0.8	25
222	Resources determine frugivore assemblages and fruit removal along an elevational gradient. Acta Oecologica, 2013, 52, 45-49.	0.5	3
223	Forest vegetation structure has more influence on predation risk of artificial ground nests than human activities. Basic and Applied Ecology, 2013, 14, 687-693.	1.2	32
224	Are Ring Ouzel (Turdus torquatus) populations of the low mountain ranges remnants of a broader distribution in the past?. Journal of Ornithology, 2013, 154, 231-237.	0.5	1
225	Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic and Applied Ecology, 2013, 14, 126-136.	1.2	177
226	Current Nearâ€ŧoâ€Nature Forest Management Effects on Functional Trait Composition of Saproxylic Beetles in Beech Forests. Conservation Biology, 2013, 27, 605-614.	2.4	188
227	Conservation value of forests attacked by bark beetles: Highest number of indicator species is found in early successional stages. Journal for Nature Conservation, 2013, 21, 97-104.	0.8	106
228	Assemblages of bats are phylogenetically clustered on a regional scale. Basic and Applied Ecology, 2013, 14, 74-80.	1.2	16
229	Some of the rarest European saproxylic beetles are common in the wilderness of Northern Mongolia. Journal of Insect Conservation, 2013, 17, 989-1001.	0.8	17
230	Forest inventories are a valuable data source for habitat modelling of forest species: an alternative to remote-sensing data. Forestry, 2013, 86, 241-253.	1.2	8
231	Up in the Tree – The Overlooked Richness of Bryophytes and Lichens in Tree Crowns. PLoS ONE, 2013, 8, e84913.	1.1	43
232	Insects Overshoot the Expected Upslope Shift Caused by Climate Warming. PLoS ONE, 2013, 8, e65842.	1.1	43
233	Direct and productivityâ€mediated indirect effects of fertilization, mowing and grazing on grassland species richness. Journal of Ecology, 2012, 100, 1391-1399.	1.9	212
234	The effect of bark beetle infestation and salvage logging on bat activity in a national park. Biodiversity and Conservation, 2012, 21, 2775-2786.	1.2	22

#	Article	IF	CITATIONS
235	Are Gastropods, Rather than Ants, Important Dispersers of Seeds of Myrmecochorous Forest Herbs?. American Naturalist, 2012, 179, 124-131.	1.0	29
236	Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecological Indicators, 2012, 23, 323-331.	2.6	102
237	Impact of Land-Use Intensity and Productivity on Bryophyte Diversity in Agricultural Grasslands. PLoS ONE, 2012, 7, e51520.	1.1	25
238	Modelling Forest α-Diversity and Floristic Composition — On the Added Value of LiDAR plus Hyperspectral Remote Sensing. Remote Sensing, 2012, 4, 2818-2845.	1.8	75
239	Aggregative response in bats: prey abundance versus habitat. Oecologia, 2012, 169, 673-684.	0.9	131
240	Comparison of the effectivity of different snare types for collecting and retaining hair from Eurasian Lynx (Lynx lynx). European Journal of Wildlife Research, 2012, 58, 579-587.	0.7	4
241	A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic and Applied Ecology, 2012, 13, 207-220.	1.2	325
242	Diversity of wood-decaying fungi under different disturbance regimes—a case study from spruce mountain forests. Biodiversity and Conservation, 2012, 21, 33-49.	1.2	46
243	Large-Scale Model-Based Assessment of Deer-Vehicle Collision Risk. PLoS ONE, 2012, 7, e29510.	1.1	52
244	Decomposing environmental, spatial, and spatiotemporal components of species distributions. Ecological Monographs, 2011, 81, 329-347.	2.4	67
245	<i>Rickettsia</i> spp. in Wild Small Mammals in Lower Bavaria, South-Eastern Germany. Vector-Borne and Zoonotic Diseases, 2011, 11, 493-502.	0.6	58
246	Land use is more important than climate for species richness and composition of bat assemblages on a regional scale. Mammalian Biology, 2011, 76, 451-460.	0.8	29
247	Habitat use of large ungulates in northeastern Germany in relation to forest management. Forest Ecology and Management, 2011, 261, 288-296.	1.4	46
248	Abundance and pest classification of scolytid species (Coleoptera: Curculionidae, Scolytinae) follow different patterns. Forest Ecology and Management, 2011, 262, 1887-1894.	1.4	30
249	Nutrient concentrations and fibre contents of plant community biomass reflect species richness patterns along a broad range of land-use intensities among agricultural grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 287-295.	1.1	48
250	Monotonicity-constrained species distribution models. Ecology, 2011, 92, 1895-1901.	1.5	27
251	Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biology and Biochemistry, 2011, 43, 2200-2207.	4.2	79
252	LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks. Biodiversity and Conservation, 2011, 20, 465-481.	1.2	36

#	Article	IF	CITATIONS
253	The influence of species traits and q-metrics on scale-specific β-diversity components of arthropod communities of temperate forests. Landscape Ecology, 2011, 26, 411-424.	1.9	11
254	The Predictability of Phytophagous Insect Communities: Host Specialists as Habitat Specialists. PLoS ONE, 2011, 6, e25986.	1.1	23
255	A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. European Journal of Forest Research, 2010, 129, 981-992.	1.1	367
256	Detection of Climate-Sensitive Zones and Identification of Climate Change Indicators: A Case Study from the Bavarian Forest National Park. Folia Geobotanica, 2010, 45, 163-182.	0.4	45
257	Composition versus physiognomy of vegetation as predictors of bird assemblages: The role of lidar. Remote Sensing of Environment, 2010, 114, 490-495.	4.6	97
258	Effects of resource availability and climate on the diversity of woodâ€decaying fungi. Journal of Ecology, 2010, 98, 822-832.	1.9	114
259	Arthropod species richness in the Norway Spruce (Picea abies (L.) Karst.) canopy along an elevation gradient. Forest Ecology and Management, 2010, 259, 1513-1521.	1.4	36
260	Large-scale reduction of ungulate browsing by managed sport hunting. Forest Ecology and Management, 2010, 260, 1416-1423.	1.4	88
261	Drivers of bryophyte diversity allow implications for forest management with a focus on climate change. Forest Ecology and Management, 2010, 260, 1956-1964.	1.4	60
262	Importance of natural disturbance for recovery of the rare polypore Antrodiella citrinella Niemelä & Ryvarden. Fungal Biology, 2010, 114, 129-133.	1.1	42
263	Three-dimensional partitioning of diversity informs state-wide strategies for the conservation of saproxylic beetles. Biological Conservation, 2010, 143, 625-633.	1.9	53
264	Learning from a "benign neglect strategy―in a national park: Response of saproxylic beetles to dead wood accumulation. Biological Conservation, 2010, 143, 2559-2569.	1.9	116
265	Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecological Indicators, 2010, 10, 341-352.	2.6	61
266	Using airborne laser scanning to model potential abundance and assemblages of forest passerines. Basic and Applied Ecology, 2009, 10, 671-681.	1.2	61
267	Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest. Journal of Ornithology, 2009, 150, 717-732.	0.5	37
268	Vacuum cleaning for conservationists: a new method for inventory of OsmodermaÂeremita (Scop.,) Tj ETQq0 0 C of Insect Conservation, 2009, 13, 355-359.) rgBT /Ov 0.8	erlock 10 Tf 5 16
269	Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. Journal of Applied Ecology, 2009, 46, 897-905.	1.9	180
270	Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (Fagus) Tj ETQq0 0 0 rgBT /0	Overlock 1	.0]f 50 62 To

#	Article	IF	CITATIONS
271	Predicting the occurrence of Middle Spotted Woodpecker Dendrocopos medius on a regional scale, using forest inventory data. Forest Ecology and Management, 2009, 257, 502-509.	1.4	33
272	Lichen diversity in temperate montane forests is influenced by forest structure more than climate. Forest Ecology and Management, 2009, 258, 745-751.	1.4	90
273	Molluscs and Climate Warming in a Low Mountain Range National Park. Malacologia, 2009, 51, 89-109.	0.2	26
274	New Possibilities of Observing Animal Behaviour from a Distance Using Activity Sensors in Gpsâ€Collars: An Attempt to Calibrate Remotely Collected Activity Data with Direct Behavioural Observations in Red Deer <i>Cervus elaphus</i> . Wildlife Biology, 2009, 15, 425-434.	0.6	50
275	The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodiversity and Conservation, 2008, 17, 2979-3001.	1.2	204
276	Spatial smoothing techniques for the assessment of habitat suitability. Environmental and Ecological Statistics, 2008, 15, 343-364.	1.9	28
277	Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany. Journal of Insect Conservation, 2008, 12, 107-124.	0.8	98
278	Environmental key factors and their thresholds for the avifauna of temperate montane forests. Forest Ecology and Management, 2008, 256, 1198-1208.	1.4	49
279	Long-term effects of logging intensity on structures, birds, saproxylic beetles and wood-inhabiting fungi in stands of European beech Fagus sylvatica L Forest Ecology and Management, 2007, 242, 297-305.	1.4	87
280	Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. European Journal of Forest Research, 2007, 126, 513-527.	1.1	82
281	Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. European Journal of Forest Research, 2005, 124, 233-242.	1.1	61
282	Maximally selected two-sample statistics as a new tool for the identification and assessment of habitat factors with an application to breeding-bird communities in oak forests. European Journal of Forest Research, 2004, 123, 219-228.	1.1	24
283	Lost in dead wood? Environmental DNA sequencing from dead wood shows little signs of saproxylic beetles. Environmental DNA, 0, , .	3.1	0