
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3070025/publications.pdf Version: 2024-02-01

SERCIO ADAMO

#	Article	IF	CITATIONS
1	NF-κBââ,¬â€œmediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. Journal of Clinical Investigation, 2013, 123, 4821-4835.	3.9	293
2	Aerobic Exercise and Pharmacological Treatments Counteract Cachexia by Modulating Autophagy in Colon Cancer. Scientific Reports, 2016, 6, 26991.	1.6	145
3	Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC Cancer, 2010, 10, 363.	1.1	133
4	Tumor necrosis factor-α gene transfer induces cachexia and inhibits muscle regeneration. Genesis, 2005, 43, 120-128.	0.8	113
5	The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials, 2011, 32, 7870-7882.	5.7	101
6	The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Frontiers in Physiology, 2019, 10, 500.	1.3	76
7	Native extracellular matrix: a new scaffolding platform for repair of damaged muscle. Frontiers in Physiology, 2014, 5, 218.	1.3	70
8	Phospholipase D Is Involved in Myogenic Differentiation through Remodeling of Actin Cytoskeleton. Molecular Biology of the Cell, 2005, 16, 1232-1244.	0.9	69
9	Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Scientific Reports, 2016, 6, 19781.	1.6	67
10	Tumor Necrosis Factor-α Inhibition of Skeletal Muscle Regeneration Is Mediated by a Caspase-Dependent Stem Cell Response. Stem Cells, 2008, 26, 997-1008.	1.4	65
11	Coordinated Actions of MicroRNAs with other Epigenetic Factors Regulate Skeletal Muscle Development and Adaptation. International Journal of Molecular Sciences, 2017, 18, 840.	1.8	65
12	Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 846-856.	1.1	62
13	Peroxynitrite Activates the NLRP3 Inflammasome Cascade in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2018, 55, 2350-2361.	1.9	53
14	Acetylcholine may regulate its own nicotinic receptor-channel through the C-kinase system. Proceedings of the Royal Society of London Series B, Containing Papers of A Biological Character, 1987, 230, 355-365.	1.8	52
15	Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 309-316.	0.9	50
16	Muscle Extracellular Matrix Scaffold Is a Multipotent Environment. International Journal of Medical Sciences, 2015, 12, 336-340.	1.1	48
17	Follicle-Stimulating Hormone Modulation of Phosphoinositide Turnover in the Immature Rat Sertoli Cell in Culture*. Endocrinology, 1988, 123, 2032-2039.	1.4	47
18	Acetylcholine stimulates phosphatidylinositol turnover at nicotinic receptors of cultured myotubes. FEBS Letters, 1985, 190, 161-164.	1.3	43

#	Article	IF	CITATIONS
19	Muscle acellular scaffold as a biomaterial: effects on C2C12 cell differentiation and interaction with the murine host environment. Frontiers in Physiology, 2014, 5, 354.	1.3	43
20	Spontaneous Physical Activity Downregulates Pax7 in Cancer Cachexia. Stem Cells International, 2016, 2016, 1-9.	1.2	43
21	Vasopressin-dependent Myogenic Cell Differentiation Is Mediated by Both Ca2+/Calmodulin-dependent Kinase and Calcineurin Pathways. Molecular Biology of the Cell, 2005, 16, 3632-3641.	0.9	40
22	PKCÎ, signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase. Molecular Biology of the Cell, 2011, 22, 1409-1419.	0.9	39
23	Histone deacetylase 4 protects from denervation and skeletal muscle atrophy in a murine model of amyotrophic lateral sclerosis. EBioMedicine, 2019, 40, 717-732.	2.7	39
24	Modulation of Caspase Activity Regulates Skeletal Muscle Regeneration and Function in Response to Vasopressin and Tumor Necrosis Factor. PLoS ONE, 2009, 4, e5570.	1.1	39
25	Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance. Stem Cell Reports, 2019, 13, 573-589.	2.3	38
26	Regulation of Sertoli cell cyclic adenosine 3′:5′ monophosphate phosphodiesterase activity by follicle stimulating hormone and dibutyryl cyclic AMP. Biochemical and Biophysical Research Communications, 1981, 98, 1044-1050.	1.0	37
27	Role of phospholipase C and D signalling pathways in vasopressin-dependent myogenic differentiation. Journal of Cellular Physiology, 1997, 171, 34-42.	2.0	37
28	HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Scientific Reports, 2018, 8, 3448.	1.6	37
29	TPA-Induced Inhibition of the Expression of Differentiative Traits in Cultured Myotubes: Dependence on Protein Synthesis. Differentiation, 1982, 21, 62-65.	1.0	34
30	Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling. Molecular Therapy, 2015, 23, 1003-1021.	3.7	33
31	Particulate and soluble adenylate cyclase activities of mouse male germ cells. Biochemical and Biophysical Research Communications, 1980, 97, 607-613.	1.0	32
32	Calcium-, phospholipid-dependent protein kinase activity of cultured rat Sertoli cells and its modifications by vitamin A. Molecular and Cellular Endocrinology, 1986, 48, 213-220.	1.6	32
33	What to Do, and What Not to Do, When Diagnosing and Treating Breakthrough Cancer Pain (BTcP): Expert Opinion. Drugs, 2016, 76, 315-330.	4.9	32
34	HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses. Skeletal Muscle, 2018, 8, 6.	1.9	32
35	Skeletal muscle is enriched in hematopoietic stem cells and not inflammatory cells in cachectic mice. Neurological Research, 2008, 30, 160-169.	0.6	31
36	Denervation does not induce muscle atrophy through oxidative stress. European Journal of Translational Myology, 2017, 27, 6406.	0.8	31

#	Article	IF	CITATIONS
37	Expression of differentiative traits in the absence of cell fusion during myogenesis in culture. Cell Differentiation, 1976, 5, 53-67.	1.3	30
38	Activity and regulation of calcium-, phospholipid-dependent protein kinase in differentiating chick myogenic cells Journal of Cell Biology, 1989, 108, 153-158.	2.3	30
39	Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application?. Materials, 2019, 12, 2375.	1.3	30
40	Involvement of Type 4 cAMP-Phosphodiesterase in the Myogenic Differentiation of L6 Cells. Molecular Biology of the Cell, 1999, 10, 4355-4367.	0.9	29
41	Skeletal Muscle Regeneration in Mice Is Stimulated by Local Overexpression of V1a-Vasopressin Receptor. Molecular Endocrinology, 2011, 25, 1661-1673.	3.7	29
42	Recent developments in studies on biological functions of vitamin A in normal and transformed tissues. Pure and Applied Chemistry, 1979, 51, 581-592.	0.9	27
43	Effects of protein kinase C (PK-C) activators and inhibitors on human large granular lymphocytes (LCL): Role of PK-C on natural killer (NK) activity. Cellular Immunology, 1989, 118, 470-481.	1.4	27
44	New insights into the epigenetic control of satellite cells. World Journal of Stem Cells, 2015, 7, 945.	1.3	26
45	Displaced Myonuclei in Cancer Cachexia Suggest Altered Innervation. International Journal of Molecular Sciences, 2020, 21, 1092.	1.8	25
46	IGF-l–induced Differentiation of L6 Myogenic Cells Requires the Activity of cAMP-Phosphodiesterase. Molecular Biology of the Cell, 2003, 14, 1392-1404.	0.9	24
47	Substrains of Inbred Mice Differ in Their Physical Activity as a Behavior. Scientific World Journal, The, 2013, 2013, 1-7.	0.8	24
48	Proliferating and quiescent cells exhibit different subcellular distribution of protein kinase C activity. FEBS Letters, 1986, 195, 352-356.	1.3	23
49	AVP Induces Myogenesis through the Transcriptional Activation of the Myocyte Enhancer Factor 2. Molecular Endocrinology, 2002, 16, 1407-1416.	3.7	23
50	The Mechanical Stimulation of Myotubes Counteracts the Effects of Tumor-Derived Factors Through the Modulation of the Activin/Follistatin Ratio. Frontiers in Physiology, 2019, 10, 401.	1.3	23
51	A Pound of Flesh: What Cachexia Is and What It Is Not. Diagnostics, 2021, 11, 116.	1.3	23
52	Increase in cytosolic Ca2+ induced by elevation of extracellular Ca2+ in skeletal myogenic cells. American Journal of Physiology - Cell Physiology, 2003, 284, C969-C976.	2.1	22
53	Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis. European Journal of Translational Myology, 2014, 24, 3790.	0.8	22
54	Polychlorobiphenyls Inhibit Skeletal Muscle Differentiation in Culture. Toxicology and Applied Pharmacology, 2001, 175, 226-233.	1.3	20

#	Article	IF	CITATIONS
55	HDAC4 Regulates Skeletal Muscle Regeneration via Soluble Factors. Frontiers in Physiology, 2018, 9, 1387.	1.3	20
56	Developmental Changes of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Activity during Spermatogenesis in the Mouse 1. Biology of Reproduction, 1983, 28, 860-869.	1.2	19
57	Hypertrophy and transcriptional regulation induced in myogenic cell line L6-C5 by an increase of extracellular calcium. Journal of Cellular Physiology, 2005, 202, 787-795.	2.0	19
58	Restoration versus reconstruction: cellular mechanisms of skin, nerve and muscle regeneration compared. Regenerative Medicine Research, 2013, 1, 4.	2.2	16
59	Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis. European Journal of Translational Myology, 2014, 24, .	0.8	16
60	Local Overexpression of V1a-Vasopressin Receptor Enhances Regeneration in Tumor Necrosis Factor-Induced Muscle Atrophy. BioMed Research International, 2014, 2014, 1-14.	0.9	16
61	V1a vasopressin receptor expression is modulated during myogenic differentiation. Differentiation, 2008, 76, 371-380.	1.0	15
62	Altered distribution of protein kinase C in dystrophic muscle cells and its modulation by liposome-delivered phospholipids. Biochemical and Biophysical Research Communications, 1986, 137, 752-758.	1.0	14
63	A Bimodal Modulation of the cAMP Pathway Is Involved in the Control of Myogenic Differentiation in L6 Cells. Journal of Biological Chemistry, 2003, 278, 49308-49315.	1.6	14
64	Culture conditions influence satellite cell activation and survival of single myofibers. European Journal of Translational Myology, 2018, 28, 7567.	0.8	14
65	signal transduction in the sertoli cell: Serum modulation of the response to FSH. The Journal of Steroid Biochemistry, 1989, 32, 129-134.	1.3	12
66	Increasing autophagy does not affect neurogenic muscle atrophy. European Journal of Translational Myology, 2018, 28, 7687.	0.8	12
67	Skeletal Muscle: A Significant Novel Neurohypophyseal Hormone-Secreting Organ. Frontiers in Physiology, 2018, 9, 1885.	1.3	12
68	Biosynthetic Changes of Myosin Heavy Subunit during Myogenesis in Culture. Differentiation, 1978, 10, 95-100.	1.0	11
69	Retinoid metabolism and mode of action Environmental Health Perspectives, 1980, 35, 147-152.	2.8	11
70	Of faeces and sweat. How much a mouse is willing to run: having a hard time measuring spontaneous physical activity in different mouse sub-strains. European Journal of Translational Myology, 2017, 27, 6483.	0.8	11
71	Cytoplasmic HDAC4 regulates the membrane repair mechanism in Duchenne muscular dystrophy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1339-1359.	2.9	11
72	Vesicle-Mediated Phosphatidylcholine Reapposition to the Plasma Membrane Following Hormone-Induced Phospholipase D Activation. Experimental Cell Research, 2000, 256, 94-104.	1.2	10

#	Article	IF	CITATIONS
73	Thyroid Hormone Protects from Fasting-Induced Skeletal Muscle Atrophy by Promoting Metabolic Adaptation. International Journal of Molecular Sciences, 2019, 20, 5754.	1.8	10
74	Retinoids and cell adhesion. Methods in Enzymology, 1990, 190, 81-91.	0.4	7
75	Phorbol ester-induced differentiation of L6 myogenic cells involves phospholipase D activation. FEBS Letters, 2004, 577, 409-414.	1.3	7
76	Inhibition of Phosphoinositide 3-Kinase/Protein Kinase B Signaling Hampers the Vasopressin-dependent Stimulation of Myogenic Differentiation. International Journal of Molecular Sciences, 2019, 20, 4188.	1.8	6
77	Characterization of the Retinoid Binding Properties of the Major Fusion Products Present in Acute Promyelocytic Leukemia Cells. Blood, 1997, 90, 1175-1185.	0.6	6
78	Retinoid Metabolism and Mode of Action. Environmental Health Perspectives, 1980, 35, 147.	2.8	4
79	Protein Kinase C in Cell Proliferation and Differentiation. Annals of the New York Academy of Sciences, 1988, 551, 369-371.	1.8	4
80	Culture of skeletal muscle cells in unprecedented proximity to a gold surface. Journal of Biomedical Materials Research - Part A, 2009, 91A, 370-377.	2.1	4
81	Epigenetics of Muscle Disorders. , 2016, , 315-333.		4
82	AVP Induces Myogenesis through the Transcriptional Activation of the Myocyte Enhancer Factor 2. Molecular Endocrinology, 2002, 16, 1407-1416.	3.7	4
83	Physiactisome: A New Nanovesicle Drug Containing Heat Shock Protein 60 for Treating Muscle Wasting and Cachexia. Cells, 2022, 11, 1406.	1.8	4
84	Specific TPA-induced protein phosphorylations in cultured myotubesâ~†. Cell Biology International Reports, 1983, 7, 189-189.	0.7	3
85	Surface Remodeling Associated with Vasopressin-Induced Membrane Traffic in L6 Myogenic Cells Archives of Histology and Cytology, 2000, 63, 441-449.	0.2	3
86	From Ejtm (European Journal of Translational Myology) to Ejt3M (European Journal of Translational) Tj ETQq0 0 () rgBT /Ov	erlgck 10 Tf 5
87	Glycopeptide alterations induced by 12-O-tetradecanoyl phorbol-13-acetate in chick embryo cultured myotubes. Carcinogenesis, 1982, 3, 1191-1194.	1.3	2
88	Phosphorylation of specific polypeptides induced by 12-O-tetra-decanoylphorbol-13-acetate in chick embryo fibroblasts. Carcinogenesis, 1984, 5, 559-563.	1.3	2
89	Phosphatidic acid-dependent activation of adenosine-3′,5′-cyclic-monophosphate-phosphodiesterase is necessary for arg-vasopressin induction of myogenesis. Lipids, 1999, 34, S81-S82.	0.7	2
90	Toxic Effects of Polychlorinated Biphenyls in Myogenic Cells. Journal of Health Science, 2004, 50, 33-41.	0.9	2

#	Article	IF	CITATIONS
91	Cell Fusion and Creatine Kinase Activity in Cultures of Chick Embryo Myoblasts. Bollettino Di Zoologia, 1975, 42, 49-56.	0.3	1
92	Neurohypophyseal hormones and skeletal muscle: a tale of two faces. European Journal of Translational Myology, 2020, 30, 53-57.	0.8	1
93	Differentiation in Culture of Myoblasts Inhibited to Fuse. Bollettino Di Zoologia, 1975, 42, 251-256.	0.3	0
94	Hormonal regulation of phosphatidylcholine metabolism and transport. Lipids, 1999, 34, S71-S71.	0.7	0
95	Will exercise mimetics hold promise?. Journal of Pharmacovigilance, 2015, 03, .	0.2	0