Lei Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3069566/publications.pdf

Version: 2024-02-01

567144 454834 37 942 15 30 citations h-index g-index papers 38 38 38 626 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Universal precursor seismicity pattern before locked-segment rupture and evolutionary rule for landmark earthquakes. Geoscience Frontiers, 2022, 13, 101314.	4.3	8
2	Evaluation of the characterization of acoustic emission of brittle rocks from the experiment to numerical simulation. Scientific Reports, 2022, 12, 498.	1.6	17
3	Effect of the pore structure of granite and gabbro after heat treatment on the radon emission rate. Environmental Science and Pollution Research, 2022, 29, 36801-36813.	2.7	12
4	Investigation into energy conversion and distribution during brittle failure of hard rock. Bulletin of Engineering Geology and the Environment, 2022, 81, 1.	1.6	11
5	Shaking Table Model Test to Determine Dynamic Response Characteristics and Failure Modes of Steep Bedding Rock Slope. Rock Mechanics and Rock Engineering, 2022, 55, 3645-3658.	2.6	10
6	Effects of bedding planes on progressive failure of shales under uniaxial compression: Insights from acoustic emission characteristics. Theoretical and Applied Fracture Mechanics, 2022, 119, 103343.	2.1	14
7	Numerical Investigation of the Scale Effects of Rock Bridges. Rock Mechanics and Rock Engineering, 2022, 55, 5671-5685.	2.6	6
8	An advanced grain-based model to characterize mechanical behaviors of crystalline rocks with different weathering degrees. Engineering Geology, 2021, 280, 105951.	2.9	20
9	Correlation study between fracability and brittleness of shale-gas reservoir. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7, 1.	1.3	12
10	The Reasonable Range Limit of the Shape Parameter in the Weibull Distribution for Describing the Brittle Failure Behavior of Rocks. Rock Mechanics and Rock Engineering, 2021, 54, 3359-3367.	2.6	17
11	The influence of microwave treatment on the mode I fracture toughness of granite. Engineering Fracture Mechanics, 2021, 249, 107768.	2.0	36
12	The influence of temperature and confining pressure on the cracks damage threshold and shape parameter m of igneous rock. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7, 1.	1.3	8
13	Wide-Range, Rapid, and Specific Identification of Pathogenic Bacteria by Surface-Enhanced Raman Spectroscopy. ACS Sensors, 2021, 6, 2911-2919.	4.0	39
14	Dynamic response characteristics and instability criteria of a slope with a middle locked segment. Soil Dynamics and Earthquake Engineering, 2021, 150, 106899.	1.9	8
15	Why the Xintan landslide was not triggered by the heaviest historical rainfall: Mechanism and review. Engineering Geology, 2021, 294, 106379.	2.9	27
16	Effects of shear rates on the damaging behaviors of layered rocks subjected to direct shear: Insights from acoustic emission characteristics. Engineering Fracture Mechanics, 2021, 258, 108046.	2.0	14
17	Energy Characteristics of Acoustic Emission at the Volume-Expansion Point of a Rock Bridge: A New Insight into the Evolutionary Mechanism of Coastal Cliff Collapse. Journal of Marine Science and Engineering, 2021, 9, 1338.	1.2	2
18	Numerical investigation on progressive fracture behaviours of macroscopic heterogeneous rock bridge. European Journal of Environmental and Civil Engineering, 2020, 24, 603-619.	1.0	4

#	Article	IF	Citations
19	Stress Wave Propagation through Rock Joints Filled with Viscoelastic Medium Considering Different Water Contents. Applied Sciences (Switzerland), 2020, 10, 4797.	1.3	9
20	Rapid detection of severe fever with thrombocytopenia syndrome virus (SFTSV) total antibodies by upâ€converting phosphor technologyâ€based lateralâ€flow assay. Luminescence, 2019, 34, 162-167.	1.5	15
21	Study on acoustic emission and X-ray computed-tomography characteristics of shale samples under uniaxial compression tests. Environmental Earth Sciences, 2019, 78, 1.	1.3	7
22	An evaluation index for the fracturing effect in shale based on laboratory testing. Environmental Earth Sciences, 2018, 77, 1.	1.3	6
23	X-ray micro-computed tomography study of the propagation of cracks in shale during uniaxial compression. Environmental Earth Sciences, 2018, 77, 1.	1.3	18
24	A physical model predicting instability of rock slopes with locked segments along a potential slip surface. Engineering Geology, 2018, 242, 34-43.	2.9	63
25	Evolution of the shape parameter in the Weibull distribution for brittle rocks under uniaxial compression. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	14
26	Porosity and wave velocity evolution of granite after high-temperature treatment: a review. Environmental Earth Sciences, 2018, 77, 1.	1.3	45
27	A possible explanation of the stair-step brittle deformation evolutionary pattern of a rockslide. Geomatics, Natural Hazards and Risk, 2017, 8, 1456-1476.	2.0	12
28	Permeability Evolution and Rock Brittle Failure. Acta Geophysica, 2015, 63, 978-999.	1.0	9
29	A Potential Strain Indicator for Brittle Failure Prediction of Low-porosity Rock: Part l—Experimental Studies Based on the Uniaxial Compression Test. Rock Mechanics and Rock Engineering, 2015, 48, 1763-1772.	2.6	28
30	Thermal damage pattern and thresholds of granite. Environmental Earth Sciences, 2015, 74, 2341-2349.	1.3	146
31	A Potential Strain Indicator for Brittle Failure Prediction of Low-Porosity Rock: Part II—Theoretical Studies Based on Renormalization Group Theory. Rock Mechanics and Rock Engineering, 2015, 48, 1773-1785.	2.6	21
32	Electrical resistivity variation in uniaxial rock compression. Arabian Journal of Geosciences, 2015, 8, 1869-1880.	0.6	26
33	A potential stress indicator for failure prediction of laboratory-scale rock samples. Arabian Journal of Geosciences, 2015, 8, 3441-3449.	0.6	15
34	New quantitative displacement criteria for slope deformation process: From the onset of the accelerating creep to brittle rupture and final failure. Engineering Geology, 2014, 182, 79-87.	2.9	47
35	A Study on Crack Damage Stress Thresholds of Different Rock Types Based on Uniaxial Compression Tests. Rock Mechanics and Rock Engineering, 2014, 47, 1183-1195.	2.6	175
36	A quantitative criterion to describe the deformation process of rock sample subjected to uniaxial compression: From criticality to final failure. Physica A: Statistical Mechanics and Its Applications, 2014, 410, 470-482.	1.2	21

#	Article	IF	CITATIONS
37	Study of the Critical Displacement of Landslides by Renormalization-Group Theory. Advanced Materials Research, 0, 183-185, 1173-1177.	0.3	O