Xiangpeng Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3069478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of Zr to strength and grain refinement in Cu Cr Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 464-473.	5.6	68
2	Suppressing spinodal decomposition by adding Co into Cu–Ni–Si alloy. Journal of Alloys and Compounds, 2016, 660, 178-183.	5.5	63
3	Retaining meta-stable fcc-Cr phase by restraining nucleation of equilibrium bcc-Cr phase in CuCrZrTi alloys during ageing. Journal of Alloys and Compounds, 2018, 749, 140-145.	5.5	44
4	Effect of Mg addition on Fe phase morphology, distribution and aging kinetics of Cu-6.5Fe alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141064.	5.6	42
5	Microstructure and properties of Cu–Ni–Si–Zr alloy after thermomechanical treatments. Rare Metals, 2013, 32, 144-149.	7.1	40
6	Effects of diffusing DyZn film on magnetic properties and thermal stability of sintered NdFeB magnets. Journal of Magnetism and Magnetic Materials, 2018, 454, 215-220.	2.3	38
7	Microstructure, magnetic properties and diffusion mechanism of DyMg co-deposited sintered Nd-Fe-B magnets. Journal of Alloys and Compounds, 2020, 819, 153002.	5.5	38
8	Increased coercivity for Nd-Fe-B melt spun ribbons with 20Âat.% Ce addition: The role of compositional fluctuation and Ce valence state. Journal of Alloys and Compounds, 2017, 710, 519-527.	5.5	34
9	Inhibition of discontinuous precipitation and enhanced properties of Cu–15Ni–8Sn alloy with Fe addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 139917.	5.6	31
10	Effects of P addition on spinodal decomposition and discontinuous precipitation in Cu-15Ni-8Sn alloy. Materials Characterization, 2021, 171, 110760.	4.4	27
11	Recrystallization behavior and mechanical properties of a Cu–15Ni–8Sn(P) alloy during prior deformation and aging treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 142025.	5.6	24
12	Effects of ultrasonic rolling on surface performance of 7B85-T6 alloy. Materials and Manufacturing Processes, 2020, 35, 250-257.	4.7	20
13	Upward Continuous Casting in the Manufacture of Cu-Cr-Ag Alloys: Potential for Enhancing Strength Whilst Maintaining Ductility. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 6083-6090.	2.2	19
14	Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys. Materials Research Express, 2018, 5, 026515.	1.6	15
15	Effect of multi-stage thermomechanical treatment on Fe phase evolution and properties of Cu-6.5Fe-0.3Mg alloy. Materials Characterization, 2022, 185, 111707.	4.4	15
16	Microstructures and mechanical properties of Cu–Ti alloys with ultrahigh strength and high ductility by thermo-mechanical treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142672.	5.6	14
17	Mechanical properties and microstructural evolution of a Cu–Cr–Ag alloy during thermomechanical treatment. Materials Science and Technology, 2018, 34, 1433-1440	1.6	12
18	Microstructure and Properties of Copper–Graphite Composites Fabricated by Spark Plasma Sintering Based on Two-Step Mixing. Metals, 2020, 10, 1506.	2.3	12

XIANGPENG XIAO

#	Article	IF	CITATIONS
19	Aging properties and precipitates analysis of Cu–2.3Fe–0.03P alloy by thermomechanical treatments. Materials Research Express, 2017, 4, 116511.	1.6	11
20	Aging Behavior and Precipitation Analysis of Cu-Ni-Co-Si Alloy. Crystals, 2018, 8, 435.	2.2	11
21	A novel route for strengthening copper rods: Non-solution heat treatment combined with pre-aging. Journal of Materials Processing Technology, 2019, 274, 116290.	6.3	11
22	Microstructure and strengthening mechanisms of CuCrZr alloy by two-step thermomechanical treatment. Journal of Materials Science: Materials in Electronics, 2020, 31, 17798-17809.	2.2	11
23	Homogeneous transformation of the grain boundary phase and Tb grain boundary diffusion optimization in sintered Nd-Fe-B magnet. Intermetallics, 2022, 144, 107490.	3.9	11
24	Effect of Y2O3 Addition on the Microstructure, Wear Resistance, and Corrosion Behavior of W-4.9Ni-2.1Fe Heavy Alloy. Journal of Materials Engineering and Performance, 2019, 28, 4801-4810.	2.5	9
25	Coarsening behavior of (Ni, Co)2Si particles in Cu–Ni–Co–Si alloy during aging treatment. Rare Metals, 2019, 38, 1062-1069.	7.1	8
26	Evolution of microstructure and properties of Cu-4.5 wt.% Ag alloy prepared by vacuum horizontal continuous casting in solid solution and aging treatment. Materials Research Express, 2020, 7, 126517.	1.6	8
27	Effect of Ultrasonic Surface Rolling Treatment on Corrosion Behavior of Alloy 690. Metals, 2020, 10, 917.	2.3	7
28	Microstructure and Properties of Cu-Fe-Cr-Ag Alloy Prepared by Directional Solidification and Upward Continuous Casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2489-2500.	2.2	7
29	Nd-Fe-B Magnets: The Gradient Change of Microstructures and the Diffusion Principle after Grain Boundary Diffusion Process. Materials, 2019, 12, 3881.	2.9	6
30	Optimization of core–shell structure distribution in sintered Nd-Fe-B magnets by titanium addition. Journal of Rare Earths, 2023, 41, 1068-1072.	4.8	5
31	Microstructure and properties of Cu–2.8Ni–0.6Si alloy. Rare Metals, 2013, 32, 228-233.	7.1	4
32	Template synthesis of ordered mesoporous MgO with superior adsorption for Pb(II) and Cd(II). Environmental Science and Pollution Research, 2021, 28, 31630-31639.	5.3	4
33	Stress Relaxation Properties and Microscopic Deformation Structure in Bending of the C7025 and C7035 Alloy. Crystals, 2018, 8, 324.	2.2	3
34	Solidification microstructure of Cu–Cr and Cu–Cr-In alloys. Materials Research Express, 2020, 7, 046501.	1.6	3
35	Study on the Softening Behavior of Cu–Cr–In Alloy during Annealing. Crystals, 2020, 10, 312.	2.2	3
36	Enhanced mechanical strength of Cu–Sn alloy by Mg addition. Materials Research Express, 2021, 8, 016541.	1.6	3

XIANGPENG XIAO

#	Article	IF	CITATIONS
37	Effect of solid solution process on the structure and properties of Cu-Cr-Mg alloy in the aging state. Journal of Alloys and Compounds, 2022, 914, 165274.	5.5	3
38	Effects of joint heat distribution on material flow and microstructure in continuous drive friction welding of 45 # steel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622110659.	2.1	2
39	Phase equilibria in Ti-rich portion and thermodynamic re-optimization of Co–Ti system. Journal of Iron and Steel Research International, 0, , 1.	2.8	1
40	Effect of trace La on microstructure and properties of Cu–Cr–In alloys. Materials Research Express, 2020, 7, 066506.	1.6	0