Xin Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3069419/publications.pdf

Version: 2024-02-01

61687 39744 131 11,470 45 98 citations h-index g-index papers 168 168 168 14506 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic features underlying the evolutionary transitions of <i>Apibacter</i> to honey bee gut symbionts. Insect Science, 2022, 29, 259-275.	1.5	13
2	Researching on the fine structure and admixture of the worldwide chicken population reveal connections between populations and important events in breeding history. Evolutionary Applications, 2022, 15, 553-564.	1.5	16
3	Tracing the origin of honey products based on metagenomics and machine learning. Food Chemistry, 2022, 371, 131066.	4.2	15
4	Amplicon Sequencing of Single-Copy Protein-Coding Genes Reveals Accurate Diversity for Sequence-Discrete Microbiome Populations. Microbiology Spectrum, 2022, 10, e0210521.	1.2	0
5	Geographical resistome profiling in the honeybee microbiome reveals resistance gene transfer conferred by mobilizable plasmids. Microbiome, 2022, 10, 69.	4.9	13
6	Diversity and functional analysis of Chinese bumblebee gut microbiota reveal the metabolic niche and antibiotic resistance variation of <i>Gilliamella</i> Insect Science, 2021, 28, 302-314.	1.5	26
7	Taxonomy must engage with new technologies and evolve to face future challenges. Nature Ecology and Evolution, 2021, 5, 3-4.	3.4	25
8	Comparative transcriptomics of iceâ€erawlers demonstrates cold specialization constrains niche evolution in a relict lineage. Evolutionary Applications, 2021, 14, 360-382.	1.5	5
9	Analysis of RNA-Seq, DNA Target Enrichment, and Sanger Nucleotide Sequence Data Resolves Deep Splits in the Phylogeny of Cuckoo Wasps (Hymenoptera: Chrysididae). Insect Systematics and Diversity, 2021, 5, .	0.7	8
10	Draft Genome Assemblies and Annotations of <i>Agrypnia vestita</i> Walker, and <i>Hesperophylax magnus</i> Banks Reveal Substantial Repetitive Element Expansion in Tube Case-Making Caddisflies (Insecta: Trichoptera). Genome Biology and Evolution, 2021, 13, .	1.1	14
11	Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evolution, 2021, 7, veab030.	2.2	35
12	Beyond Drosophila: resolving the rapid radiation of schizophoran flies with phylotranscriptomics. BMC Biology, 2021, 19, 23.	1.7	22
13	The larvae of Chinese Hydropsychidae (Insecta: Trichoptera), Part II: Potamyia chinensis and Cheumatopsyche trifascia . Zootaxa, 2021, 4926, 547-558.	0.2	1
14	Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Systematic Entomology, 2021, 46, 952-967.	1.7	13
15	The larvae of Chinese Hydropsychidae (Insecta: Trichoptera), Part III: Hydromanicus melli Complex, H. canaliculatus, and H. umbonatus. Zootaxa, 2021, 5026, 527-540.	0.2	O
16	Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics. IScience, 2021, 24, 103324.	1.9	25
17	Enterococcus faecium Regulates Honey Bee Developmental Genes. International Journal of Molecular Sciences, 2021, 22, 12105.	1.8	12
18	Multifunctional cellulase enzymes are ancestral in Polyneoptera. Insect Molecular Biology, 2020, 29, 124-135.	1.0	21

#	Article	IF	Citations
19	Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nature Communications, 2020, 11, 4939.	5.8	82
20	The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest. BMC Biology, 2020, 18, 90.	1.7	40
21	Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps. BMC Biology, 2020, 18, 89.	1.7	24
22	Using full-length metabarcoding and DNA barcoding to infer community assembly for speciose taxonomic groups: a case study. Evolutionary Ecology, 2020, 34, 1063-1088.	0.5	2
23	Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee. Science Advances, 2020, 6, .	4.7	42
24	Four myriapod relatives – but who are sisters? No end to debates on relationships among the four major myriapod subgroups. BMC Evolutionary Biology, 2020, 20, 144.	3.2	13
25	An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evolutionary Biology, 2020, 20, 64.	3.2	48
26	Regional assemblages shaped by historical and contemporary factors: Evidence from a speciesâ€rich insect group. Molecular Ecology, 2020, 29, 2492-2510.	2.0	8
27	Analysis of the Chinese Alligator $TCR\hat{1}\pm\hat{1}$ Loci Reveals the Evolutionary Pattern of Atypical $TCR\hat{1}$ in Tetrapods. Journal of Immunology, 2020, 205, 637-647.	0.4	6
28	Phylogenomics changes our understanding about earwig evolution. Systematic Entomology, 2020, 45, 516-526.	1.7	15
29	A multigene phylogeny and timeline for Trichoptera (Insecta). Systematic Entomology, 2020, 45, 670-686.	1.7	66
30	Chromosomeâ€level genome assembly of an important pine defoliator, <i>Dendrolimus punctatus</i> (Lepidoptera; Lasiocampidae). Molecular Ecology Resources, 2020, 20, 1023-1037.	2.2	34
31	Entomomonas moraniae gen. nov., sp. nov., a member of the family Pseudomonadaceae isolated from Asian honey bee gut, possesses a highly reduced genome. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 165-171.	0.8	17
32	Verification of virus identity and host association using genomics technology. Biodiversity Science, 2020, 28, 587-595.	0.2	0
33	First mitochondrial genomes of five hoverfly species of the genus <i>Eristalinu</i> s (Diptera:) Tj ETQq1 1 0.7843	14 rgBT /0	Overlock 107
34	Genomeâ€skimming provides accurate quantification for pollen mixtures. Molecular Ecology Resources, 2019, 19, 1433-1446.	2.2	31
35	Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22657-22663.	3.3	291
36	Alterations of the Gut Microbiota in Multiple System Atrophy Patients. Frontiers in Neuroscience, 2019, 13, 1102.	1.4	42

#	Article	IF	CITATIONS
37	Patterns and Constraints in the Evolution of Sperm Individualization Genes in Insects, with an Emphasis on Beetles. Genes, 2019, 10, 776.	1.0	1
38	Old World and New World Phasmatodea: Phylogenomics Resolve the Evolutionary History of Stick and Leaf Insects. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	80
39	Genomic signatures accompanying the dietary shift to phytophagy in polyphagan beetles. Genome Biology, 2019, 20, 98.	3 . 8	27
40	Trends in DNA barcoding and metabarcoding. Genome, 2019, 62, v-viii.	0.9	21
41	Phylogenomic analysis of Calyptratae: resolving the phylogenetic relationships within a major radiation of Diptera. Cladistics, 2019, 35, 605-622.	1.5	51
42	Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Molecular Phylogenetics and Evolution, 2019, 135, 270-285.	1.2	36
43	An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182076.	1.2	143
44	The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24729-24737.	3.3	372
45	Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathogens, 2019, 15, e1008224.	2.1	101
46	Polymorphisms in DNA methylation–related genes are linked to the phenotype of Machado-Joseph disease. Neurobiology of Aging, 2019, 75, 225.e1-225.e8.	1.5	5
47	Phylogenomics from lowâ€coverage wholeâ€genome sequencing. Methods in Ecology and Evolution, 2019, 10, 507-517.	2.2	59
48	Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3024-3029.	3.3	150
49	Understanding biodiversity using genomics: Hooke's microscope in the era of big data. Biodiversity Science, 2019, 27, 475-479.	0.2	1
50	A new perspective on landscape impact in bee populations: Considering the bee gut microbiome. Biodiversity Science, 2019, 27, 516-525.	0.2	0
51	New data, same story: phylogenomics does not support Syrphoidea (Diptera: Syrphidae, Pipunculidae). Systematic Entomology, 2018, 43, 447-459.	1.7	53
52	Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Molecular Ecology Resources, 2018, 18, 1020-1034.	2.2	104
53	Analysis of $TCR\hat{l}^2$ and $TCR\hat{l}^3$ genes in Chinese alligator provides insights into the evolution of TCR genes in jawed vertebrates. Developmental and Comparative Immunology, 2018, 85, 31-43.	1.0	10
54	Updated frequency analysis of spinocerebellar ataxia in China. Brain, 2018, 141, e22-e22.	3.7	33

#	Article	lF	Citations
55	Characterization of viral RNA splicing using whole-transcriptome datasets from host species. Scientific Reports, 2018, 8, 3273.	1.6	10
56	Association of <i>TNF-\hat{l}±</i> rs1799964 and <i>IL-$1\hat{l}$2</i> rs16944 polymorphisms with multiple system atrophy in Chinese Han population. International Journal of Neuroscience, 2018, 128, 761-764.	0.8	16
57	A phylogenomic analysis of lichen-feeding tiger moths uncovers evolutionary origins of host chemical sequestration. Molecular Phylogenetics and Evolution, 2018, 121, 23-34.	1.2	17
58	Epithelial Hes1 maintains gut homeostasis by preventing microbial dysbiosis. Mucosal Immunology, 2018, 11, 716-726.	2.7	35
59	Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular Phylogenetics and Evolution, 2018, 120, 286-296.	1.2	83
60	Identifying SYNE1 Ataxia With Novel Mutations in a Chinese Population. Frontiers in Neurology, 2018, 9, 1111.	1.1	14
61	Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12775-12780.	3.3	275
62	The genome of an underwater architect, the caddisfly <i>Stenopsyche tienmushanensis</i> Hwang (Insecta: Trichoptera). GigaScience, 2018, 7, .	3.3	41
63	Cerebellar IncRNA Expression Profile Analysis of SCA3/MJD Mice. International Journal of Genomics, 2018, 2018, 1-6.	0.8	5
64	Investigation on modulation of DNA repair pathways in Chinese MJD patients. Neurobiology of Aging, 2018, 71, 267.e5-267.e6.	1.5	5
65	Functional characterization of the Hyles euphorbiae hawkmoth transcriptomeÂreveals strong expression of phorbol ester detoxification and seasonal cold hardiness genes. Frontiers in Zoology, 2018, 15, 20.	0.9	13
66	Anchored phylogenomics unravels the evolution of spider flies (Diptera, Acroceridae) and reveals discordance between nucleotides and amino acids. Molecular Phylogenetics and Evolution, 2018, 128, 233-245.	1.2	35
67	Qualitative and quantitative molecular construction of plant– pollinator network: Application and prospective. Biodiversity Science, 2018, 26, 445-456.	0.2	3
68	Alteration of methylation status in the ATXN3 gene promoter region is linked to the SCA3/MJD. Neurobiology of Aging, 2017, 53, 192.e5-192.e10.	1.5	18
69	Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invertebrate Systematics, 2017, 31, 1.	0.5	22
70	Evolutionary History of the Hymenoptera. Current Biology, 2017, 27, 1013-1018.	1.8	611
71	Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Molecular Phylogenetics and Evolution, 2017, 116, 213-226.	1.2	87
72	Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes. GigaScience, 2017, 6, 1-14.	3.3	40

#	Article	IF	Citations
73	Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics, $2017, 18, 111.$	1.2	146
74	Filling reference gaps via assembling DNA barcodes using high-throughput sequencingâ€"moving toward barcoding the world. GigaScience, 2017, 6, 1-8.	3.3	18
75	The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evolutionary Biology, 2017, 17, 269.	3.2	40
76	Earth BioGenome Project and Taxonomy. Biodiversity Science, 2017, 25, 1251-1254.	0.2	0
77	Effectiveness of physical, psychological, social, and spiritual intervention in breast cancer survivors: An integrative review. Asia-Pacific Journal of Oncology Nursing, 2016, 3, 226-232.	0.7	30
78	Networking Our Way to Better Ecosystem Service Provision. Trends in Ecology and Evolution, 2016, 31, 105-115.	4.2	72
79	The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160025.	1.8	62
80	<i>ATXN2</i> polymorphism modulates age at onset in Machado-Joseph disease. Brain, 2016, 139, aww176.	3.7	16
81	Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects. Scientific Reports, 2016, 6, 26388.	1.6	78
82	Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects. BMC Genomics, 2016, 17, 861.	1.2	23
83	The Global Genome Biodiversity Network (GGBN) Data Standard specification. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw125.	1.4	55
84	Evolution of neuropeptides in non-pterygote hexapods. BMC Evolutionary Biology, 2016, 16, 51.	3.2	63
85	Mitochondrial metagenomics: letting the genes out of the bottle. GigaScience, 2016, 5, 15.	3.3	103
86	Molecular phylogeny of the highly disjunct cliff water beetles from South Africa and China (Coleoptera: Aspidytidae). Zoological Journal of the Linnean Society, 2016, 176, 537-546.	1.0	19
87	The complete mitochondrial genome of the pumpkin fruit fly, Bactrocera tau (Diptera: Tephritidae). Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 2502-2503.	0.7	15
88	Mitochondrial capture enriches mitoâ€DNA 100 fold, enabling PCRâ€free mitogenomics biodiversity analysis. Molecular Ecology Resources, 2016, 16, 470-479.	2.2	74
89	The mitochondrial genome of the winter stonefly <i>Apteroperla tikumana</i> (Plecoptera, Capniidae). Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 3030-3032.	0.7	9
90	Mitochondrial genome of Hylaeus dilatatus (Hymenoptera: Colletidae). Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 3975-3976.	0.7	9

#	Article	IF	CITATIONS
91	Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects. Genome Biology and Evolution, 2016, 8, evw281.	1.1	92
92	Progress on the phylogeny of caddisflies (Trichoptera) . Zoosymposia, 2016, 10, 248-256.	0.3	17
93	Using DNA barcode data to add leaves to the Trichoptera tree of life . Zoosymposia, 2016, 10, 193-199.	0.3	4
94	Highâ€throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods in Ecology and Evolution, 2015, 6, 1034-1043.	2.2	119
95	Response to Comment on "Phylogenomics resolves the timing and pattern of insect evolution― Science, 2015, 349, 487-487.	6.0	17
96	Mitochondrial phylogenomics and genetic relationships of closely related pine moth (Lasiocampidae:) Tj ETQq0 C	0 rgBT /C	verlock 10 T
97	Identification and distribution of SIFamide in the nervous system of the desert locust <i>Schistocerca gregaria</i> . Journal of Comparative Neurology, 2015, 523, 108-125.	0.9	28
98	Challenges in the early detection and intervention of the psychosis-risk syndrome. Shanghai Archives of Psychiatry, 2015, 27, 45-7.	0.7	0
99	Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biology, 2014, 15, 521.	3.8	404
100	Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes. Cell Reports, 2014, 8, 1354-1364.	2.9	162
101	The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes. Journal of Heredity, 2014, 105, 1-18.	1.0	96
102	Phylogenomics resolves the timing and pattern of insect evolution. Science, 2014, 346, 763-767.	6.0	2,096
103	Multiplex sequencing of pooled mitochondrial genomes—a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research, 2014, 42, e166-e166.	6.5	230
104	SOAPdenovo-Trans: <i>de novo</i> transcriptome assembly with short RNA-Seq reads. Bioinformatics, 2014, 30, 1660-1666.	1.8	826
105	Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nature Communications, 2014, 5, 3966.	5.8	124
106	Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Scientific Reports, 2014, 4, 5288.	1.6	39
107	Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience, 2013, 2, 4.	3.3	227
108	DNA barcoding facilitates associations and diagnoses for Trichoptera larvae of the Churchill (Manitoba, Canada) area. BMC Ecology, 2013, 13, 5.	3.0	54

#	Article	IF	Citations
109	A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 2013, 45, 220-225.	9.4	472
110	SOAP B arcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. Methods in Ecology and Evolution, 2013, 4, 1142-1150.	2.2	45
111	The i5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment. Journal of Heredity, 2013, 104, 595-600.	1.0	358
112	The importance of biobanking in molecular taxonomy, with proposed definitions for vouchers in a molecular context. ZooKeys, 2013, 365, 67-70.	0.5	64
113	Suggestions for a molecular biodiversity assessment of South East Asian freshwater invertebrates. Lessons from the megadiverse beetles (Coleoptera). Journal of Limnology, 2013, 72, .	0.3	8
114	Eupolybothrus cavernicolus KomeriÄki & Dr. Stoev sp.Ân. (Chilopoda: Lithobiomorpha: Lithobiidae): the first eukaryotic species description combining transcriptomic, DNA barcoding andÂmicro-CT imaging data. Biodiversity Data Journal, 2013, 1, e1013.	0.4	46
115	Diversity of mitochondrial and larval morphology characters in the genus Diplectrona (Trichoptera:) Tj ETQq $1\ 1$	0.784314 0.8	rgBT /Overloo
116	A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects. PLoS ONE, 2012, 7, e38063.	1.1	86
117	DNA barcodes reveal cryptic genetic diversity within the blackfly subgenus Trichodagmia Enderlein (Diptera: Simuliidae: Simulium) and related taxa in the New World. Zootaxa, 2012, 3514, 43.	0.2	40
118	Congruence of biodiversity measures among larval dragonflies and caddisflies from three Canadian rivers. Freshwater Biology, 2012, 57, 628-639.	1.2	14
119	Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems. PLoS ONE, 2012, 7, e36514.	1.1	148
120	Building freshwater macroinvertebrate DNA-barcode libraries from reference collection material: formalin preservation vs specimen age. Journal of the North American Benthological Society, 2011, 30, 125-130.	3.0	35
121	DNA barcoding facilitates description of unknown faunas: a case study on Trichoptera in the headwaters of the Tigris River, Iraq. Journal of the North American Benthological Society, 2011, 30, 163-173.	3.0	18
122	Pyrosequencing for Mini-Barcoding of Fresh and Old Museum Specimens. PLoS ONE, 2011, 6, e21252.	1.1	66
123	Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos. PLoS ONE, 2011, 6, e17497.	1.1	459
124	Accelerated construction of a regional DNA-barcode reference library: caddisflies (Trichoptera) in the Great Smoky Mountains National Park. Journal of the North American Benthological Society, 2011, 30, 131-162.	3.0	58
125	DNA barcode data confirm new species and reveal cryptic diversity in Chilean <i>Smicridea</i> /i>(<i>Smicridea</i>) (Trichoptera:Hydropsychidae). Journal of the North American Benthological Society, 2010, 29, 1058-1074.	3.0	72
126	Defining the genusHydropsyche(Trichoptera:Hydropsychidae) based on DNA and morphological evidence. Journal of the North American Benthological Society, 2010, 29, 918-933.	3.0	27

#	Article	IF	CITATIONS
127	COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of figâ€associated ⟨i⟩Sycophila⟨ i⟩ (Hymenoptera, Eurytomidae). Molecular Ecology Resources, 2010, 10, 31-40.	2.2	58
128	Ephemeroptera, Plecoptera, and Trichoptera fauna of Churchill (Manitoba, Canada): insights into biodiversity patterns from DNA barcoding. Journal of the North American Benthological Society, 2010, 29, 814-837.	3.0	95
129	Towards a comprehensive barcode library for arctic life - Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada. Frontiers in Zoology, 2009, 6, 30.	0.9	112
130	The larvae of Chinese Hydropsychidae (Insecta: Trichoptera), Part I: Arctopsyche shimianensis, Parapsyche sp. A, and Diplectrona obscura. Zootaxa, 2009, 2174, 1-17.	0.2	9
131	Associating larvae and adults of Chinese Hydropsychidae caddisflies (Insecta:Trichoptera) using DNA sequences. Journal of the North American Benthological Society, 2007, 26, 719-742.	3.0	113