Jia-Zhao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3069136/publications.pdf Version: 2024-02-01

ΙΙΛ-ΖΗΛΟ \λ/ΛΝΟ

#	Article	IF	CITATIONS
1	Boron leaching: Creating vacancy-rich Ni for enhanced hydrogen evolution. Nano Research, 2022, 15, 1868-1873.	5.8	18
2	The Emerging Electrochemical Activation Tactic for Aqueous Energy Storage: Fundamentals, Applications, and Future. Advanced Functional Materials, 2022, 32, .	7.8	34
3	Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. Nano Letters, 2022, 22, 1302-1310.	4.5	68
4	Prussian Blue Analogues for Sodiumâ€ion Batteries: Past, Present, and Future. Advanced Materials, 2022, 34, e2108384.	11.1	252
5	Ball Milling Solid‣tate Synthesis of Highly Crystalline Prussian Blue Analogue Na _{2â^'<i>x</i>} MnFe(CN) ₆ Cathodes for Allâ€Climate Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	53
6	Ball Milling Solidâ€6tate Synthesis of Highly Crystalline Prussian Blue Analogue Na _{2â^'<i>x</i>} MnFe(CN) ₆ Cathodes for Allâ€Climate Sodiumâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	11
7	Organic Small Molecules with Electrochemicalâ€Active Phenolic Enolate Groups for Readyâ€toâ€Charge Organic Sodiumâ€Ion Batteries. Small Methods, 2022, 6, .	4.6	15
8	Research Progress and Future Perspectives on Rechargeable Naâ€O ₂ and Na O ₂ Batteries. Energy and Environmental Materials, 2021, 4, 158-177.	7.3	25
9	Tuning NaO2 formation and decomposition routes with nitrogen-doped nanofibers for low overpotential Na-O2 batteries. Nano Energy, 2021, 81, 105529.	8.2	19
10	Critical Advances in Ambient Air Operation of Nonaqueous Rechargeable Li–Air Batteries. Small, 2021, 17, e1903854.	5.2	45
11	Li ₂ Sâ€Based Liâ€Ion Sulfur Batteries: Progress and Prospects. Small, 2021, 17, e1903934.	5.2	41
12	Facile Fabrication of Ag Nanocrystals Encapsulated in Nitrogenâ€doped Fibrous Carbon as an Efficient Catalyst for Lithium Oxygen Batteries. Energy and Environmental Materials, 2021, 4, 239-245.	7.3	20
13	Understanding the Effects of the Low-Concentration Electrolyte on the Performance of High-Energy-Density Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28405-28414.	4.0	19
14	Accelerated Polysulfide Redox in Binderâ€Free Li ₂ S Cathodes Promises Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2100957.	10.2	35
15	Processing Rusty Metals into Versatile Prussian Blue for Sustainable Energy Storage. Advanced Energy Materials, 2021, 11, 2102356.	10.2	41
16	The Dual Functions of Defectâ€Rich Carbon Nanotubes as Both Conductive Matrix and Efficient Mediator for LiS Batteries. Small, 2021, 17, e2103535.	5.2	23
17	Manipulating 2D Fewâ€Layer Metal Sulfides as Anode Towards Enhanced Sodiumâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 236-253.	2.4	16
18	Uniform Polypyrrole Layer-Coated Sulfur/Graphene Aerogel via the Vapor-Phase Deposition Technique as the Cathode Material for Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5958-5967.	4.0	29

#	Article	IF	CITATIONS
19	General Synthesis of Singleâ€Atom Catalysts for Hydrogen Evolution Reactions and Roomâ€Temperature Naâ€S Batteries. Angewandte Chemie - International Edition, 2020, 59, 22171-22178.	7.2	80
20	Electron Delocalization and Dissolutionâ€Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zincâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001852.	10.2	125
21	Confining Ultrathin 2D Superlattices in Mesoporous Hollow Spheres Renders Ultrafast and Highâ€Capacity Naâ€lon Storage. Advanced Energy Materials, 2020, 10, 2001033.	10.2	25
22	General Synthesis of Singleâ€Atom Catalysts for Hydrogen Evolution Reactions and Roomâ€Temperature Naâ€S Batteries. Angewandte Chemie, 2020, 132, 22355-22362.	1.6	62
23	Heterostructured Mo2C–MoO2 as highly efficient catalyst for rechargeable Li–O2 battery. Journal of Power Sources, 2020, 470, 228317.	4.0	23
24	Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy, 2020, 74, 104880.	8.2	225
25	Nanostructured CoS ₂ -Decorated Hollow Carbon Spheres: A Performance Booster for Li-Ion/Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 6447-6459.	2.5	17
26	Layered mesoporous CoO/reduced graphene oxide with strong interfacial coupling as a high-performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 843, 156050.	2.8	32
27	Self-assembling RuO ₂ nanogranulates with few carbon layers as an interconnected nanoporous structure for lithium–oxygen batteries. Chemical Communications, 2020, 56, 7253-7256.	2.2	5
28	A conductive polymer derived N-doped carbon nanofiber supported Li2S coating layer for Li–S batteries with high mass loading. Journal of Alloys and Compounds, 2020, 828, 154264.	2.8	9
29	Electro-polymerized polypyrrole film for fabrication of flexible and slurry-free polypyrrole-sulfur-polypyrrole sandwich electrode for the lithium-sulfur battery. Journal of Power Sources, 2019, 437, 226925.	4.0	27
30	Binderâ€Free 3D Integrated Ni@Ni 3 Pt Air Electrode for Zn–Air Batteries. Global Challenges, 2019, 3, 1900027.	1.8	11
31	Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation. Nature Chemistry, 2019, 11, 695-701.	6.6	86
32	Catalytic Activity Boosting of Nickel Sulfide toward Oxygen Evolution Reaction via Confined Overdoping Engineering. ACS Applied Energy Materials, 2019, 2, 5363-5372.	2.5	48
33	Atomicâ€Local Environments of Singleâ€Atom Catalysts: Synthesis, Electronic Structure, and Activity. Advanced Energy Materials, 2019, 9, 1900722.	10.2	128
34	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO ₂ Quantum Dots for Exceptional Sodiumâ€kon Storage. Angewandte Chemie - International Edition, 2019, 58, 14125-14128.	7.2	47
35	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO 2 Quantum Dots for Exceptional Sodiumâ€ŀon Storage. Angewandte Chemie, 2019, 131, 14263-14266.	1.6	13
36	General Ï€â€Electronâ€Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Singleâ€Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 11868-11873.	7.2	229

#	Article	IF	CITATIONS
37	General ï€â€Electronâ€Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Singleâ€Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angewandte Chemie, 2019, 131, 11994-11999.	1.6	28
38	Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812-1827.	6.4	79
39	Lithium sulfide-based cathode for lithium-ion/sulfur battery: Recent progress and challenges. Energy Storage Materials, 2019, 19, 1-15.	9.5	64
40	Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions. Advanced Materials, 2019, 31, e1804587.	11.1	254
41	The Quasiâ€Ptâ€Allotrope Catalyst: Hollow PtCo@singleâ€Atom Pt ₁ on Nitrogenâ€Doped Carbon toward Superior Oxygen Reduction. Advanced Functional Materials, 2019, 29, 1807340.	7.8	97
42	Metallic state two-dimensional holey-structured Co ₃ FeN nanosheets as stable and bifunctional electrocatalysts for zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 26549-26556.	5.2	30
43	Highly reversible Li-O2 battery induced by modulating local electronic structure via synergistic interfacial interaction between ruthenium nanoparticles and hierarchically porous carbon. Nano Energy, 2019, 57, 166-175.	8.2	73
44	Free-Standing Three-Dimensional CuCo ₂ S ₄ Nanosheet Array with High Catalytic Activity as an Efficient Oxygen Electrode for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2019, 11, 3834-3842.	4.0	75
45	Componentâ€Interaction Reinforced Quasiâ€Solid Electrolyte with Multifunctionality for Flexible Li–O ₂ Battery with Superior Safety under Extreme Conditions. Small, 2019, 15, e1804701.	5.2	38
46	Review of Electrolytes in Nonaqueous Lithium–Oxygen Batteries. Advanced Sustainable Systems, 2018, 2, 1700183.	2.7	46
47	An Integrated Freeâ€Standing Flexible Electrode with Holeyâ€Structured 2D Bimetallic Phosphide Nanosheets for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1801016.	7.8	59
48	Remarkable Enhancement in Sodium″on Kinetics of NaFe ₂ (CN) ₆ by Chemical Bonding with Graphene. Small Methods, 2018, 2, 1700346.	4.6	40
49	Free-standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries. Energy Storage Materials, 2018, 13, 312-322.	9.5	105
50	Metal-oxygen bonds: Stabilizing the intermediate species towards practical Li-air batteries. Electrochimica Acta, 2018, 259, 313-320.	2.6	12
51	Ultrathin and Edge-Enriched Holey Nitride Nanosheets as Bifunctional Electrocatalysts for the Oxygen and Hydrogen Evolution Reactions. ACS Catalysis, 2018, 8, 9686-9696.	5.5	71
52	Carbon- and binder-free 3D porous perovskite oxide air electrode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 5283-5289.	5.2	49
53	Mo ₂ C/CNT: An Efficient Catalyst for Rechargeable Li–CO ₂ Batteries. Advanced Functional Materials, 2017, 27, 1700564.	7.8	236
54	Investigation of Promising Air Electrode for Realizing Ultimate Lithium Oxygen Battery. Advanced Energy Materials, 2017, 7, 1700234.	10.2	44

#	Article	IF	CITATIONS
55	Structure–Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance. Advanced Materials, 2017, 29, 1700449.	11.1	96
56	A 3D hierarchical porous Co ₃ O ₄ nanotube network as an efficient cathode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 14673-14681.	5.2	50
57	Capillary-Induced Ge Uniformly Distributed in N-Doped Carbon Nanotubes with Enhanced Li-Storage Performance. Small, 2017, 13, 1700920.	5.2	27
58	Carbon-Encapsulated Sn@N-Doped Carbon Nanotubes as Anode Materials for Application in SIBs. ACS Applied Materials & Interfaces, 2017, 9, 37682-37693.	4.0	52
59	Reverse Microemulsion Synthesis of Sulfur/Graphene Composite for Lithium/Sulfur Batteries. ACS Nano, 2017, 11, 9048-9056.	7.3	73
60	A 3D porous nitrogen-doped carbon-nanofiber-supported palladium composite as an efficient catalytic cathode for lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 1462-1471.	5.2	71
61	Rapid hydrothermal synthesis of Li3VO4 with different favored facets. Journal of Solid State Electrochemistry, 2017, 21, 2547-2553.	1.2	8
62	Synthesis and Electrochemical Properties of Li[Ni1/3Co1/3Mn1/3]O2 for Lithium Ion Batteries. Science of Advanced Materials, 2017, 9, 331-335.	0.1	1
63	Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction. Frontiers in Chemistry, 2016, 4, 36.	1.8	18
64	Nanofibrous Co ₃ O ₄ /PPy Hybrid with Synergistic Effect as Bifunctional Catalyst for Lithiumâ€Oxygen Batteries. Advanced Materials Interfaces, 2016, 3, 1600030.	1.9	33
65	Selfâ€Assembled 3D Foamâ€Like NiCo ₂ O ₄ as Efficient Catalyst for Lithium Oxygen Batteries. Small, 2016, 12, 602-611.	5.2	97
66	Graphiteâ€Nanoplateâ€Coated Bi ₂ S ₃ Composite with Highâ€Volume Energy Density and Excellent Cycle Life for Roomâ€Temperature Sodium–Sulfide Batteries. Chemistry - A European Journal, 2016, 22, 590-597.	1.7	48
67	3-D structured SnO ₂ –polypyrrole nanotubes applied in Na-ion batteries. RSC Advances, 2016, 6, 103124-103131.	1.7	19
68	A microwave autoclave synthesized MnO2/graphene composite as a cathode material for lithium–oxygen batteries. Journal of Applied Electrochemistry, 2016, 46, 869-878.	1.5	22
69	Corrigendum to "Rapid synthesis of Li4Ti5O12/grapheme composite with superior rate capability by a microwave-assisted hydrothermal method" [Nano Energy (2014) 8, 297–304]. Nano Energy, 2016, 30, 910.	8.2	0
70	Ternary Porous Sulfur/Dual-Carbon Architectures for Lithium/Sulfur Batteries Obtained Continuously and on a Large Scale via an Industry-Oriented Spray-Pyrolysis/Sublimation Method. ACS Applied Materials & Interfaces, 2016, 8, 25251-25260.	4.0	15
71	Ultrafine Mn ₃ O ₄ Nanowires/Three-Dimensional Graphene/Single-Walled Carbon Nanotube Composites: Superior Electrocatalysts for Oxygen Reduction and Enhanced Mg/Air Batteries. ACS Applied Materials & Interfaces, 2016, 8, 27710-27719.	4.0	48
72	General synthesis of xLi ₂ MnO ₃ ·(1 â^') Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 72 Td (x) microspheres towards enhancing the performance of rechargeable lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 12442-12450.	LiNi _{ 5.2}	1/3Co 38

#	Article	IF	CITATIONS
73	Binderâ€Free and Carbonâ€Free 3D Porous Air Electrode for Liâ€O ₂ Batteries with High Efficiency, High Capacity, and Long Life. Small, 2016, 12, 3031-3038.	5.2	59
74	Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C). Journal of Materials Chemistry A, 2016, 4, 505-511.	5.2	106
75	A methodical approach for fabrication of binder-free Li2S-C composite cathode with high loading of active material for Li-S battery. Carbon, 2016, 103, 163-171.	5.4	45
76	Highly Ordered Single Crystalline Nanowire Array Assembled Three-Dimensional Nb ₃ O ₇ (OH) and Nb ₂ O ₅ Superstructures for Energy Storage and Conversion Applications. ACS Nano, 2016, 10, 507-514.	7.3	81
77	Synthesis and Electrochemical Properties of LiMnBO ₃ and LiMnBO ₃ /C Composite. Science of Advanced Materials, 2016, 8, 980-986.	0.1	1
78	Lithium–Oxygen Batteries: Porous AgPd–Pd Composite Nanotubes as Highly Efficient Electrocatalysts for Lithium–Oxygen Batteries (Adv. Mater. 43/2015). Advanced Materials, 2015, 27, 7012-7012.	11.1	2
79	Porous AgPd–Pd Composite Nanotubes as Highly Efficient Electrocatalysts for Lithium–Oxygen Batteries. Advanced Materials, 2015, 27, 6862-6869.	11.1	106
80	A Facile Synthesis of High‣urfaceâ€Area Sulfur–Carbon Composites for Li/S Batteries. Chemistry - A European Journal, 2015, 21, 10061-10069.	1.7	20
81	A hybrid gel–solid-state polymer electrolyte for long-life lithium oxygen batteries. Chemical Communications, 2015, 51, 8269-8272.	2.2	47
82	A systematic approach to high and stable discharge capacity for scaling up the lithium–sulfur battery. Journal of Power Sources, 2015, 279, 231-237.	4.0	25
83	Rapid synthesis of α-Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries. Journal of Power Sources, 2015, 280, 107-113.	4.0	123
84	A facile approach to synthesize stable CNTs@MnO electrocatalyst for high energy lithium oxygen batteries. Scientific Reports, 2015, 5, 8012.	1.6	34
85	A new, cheap, and productive FeP anode material for sodium-ion batteries. Chemical Communications, 2015, 51, 3682-3685.	2.2	154
86	Chemical adsorption: another way to anchor polysulfides. Nano Energy, 2015, 12, 810-815.	8.2	47
87	A Metalâ€Free, Freeâ€Standing, Macroporous Graphene@gâ€C ₃ N ₄ Composite Air Electrode for Highâ€Energy Lithium Oxygen Batteries. Small, 2015, 11, 2817-2824.	5.2	157
88	A B ₄ C nanowire and carbon nanotube composite as a novel bifunctional electrocatalyst for high energy lithium oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 18395-18399.	5.2	22
89	Comparison of Few-layer Graphene Prepared from Natural Graphite through Fast Synthesis Approach. Journal of Materials Science and Technology, 2015, 31, 907-912.	5.6	19
90	A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19011-19017.	5.2	113

#	Article	IF	CITATIONS
91	Cobalt phosphide as a new anode material for sodium storage. Journal of Power Sources, 2015, 294, 627-632.	4.0	158
92	Heterogeneous intergrowth xLi1.5Ni0.25Mn0.75O2.5·(1 â^² x)Li0.5Ni0.25Mn0.75O2 (0 ≤ ≤) composites synergistic effect on electrochemical performance. Dalton Transactions, 2015, 44, 14255-14264.	^{;;} 1.6	10
93	Facile Method To Synthesize Na-Enriched Na _{1+<i>x</i>} FeFe(CN) ₆ Frameworks as Cathode with Superior Electrochemical Performance for Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 1997-2003.	3.2	163
94	N-Doped Crumpled Graphene Derived from Vapor Phase Deposition of PPy on Graphene Aerogel as an Efficient Oxygen Reduction Reaction Electrocatalyst. ACS Applied Materials & Interfaces, 2015, 7, 7066-7072.	4.0	42
95	Multifunctional conducing polymer coated Na1+MnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy, 2015, 13, 200-207.	8.2	165
96	Synthesis and Electrochemical Properties of LiFePO ₄ /C for Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2015, 15, 2253-2257.	0.9	2
97	Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery. RSC Advances, 2015, 5, 80536-80541.	1.7	52
98	3D Fe2(MoO4)3 microspheres with nanosheet constituents as high-capacity anode materials for lithium-ion batteries. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	18
99	Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy, 2015, 11, 587-599.	8.2	128
100	Improving the electrochemical performance of the LiNi _{0.5} Mn _{1.5} O ₄ spinel by polypyrrole coating as a cathode material for the lithium-ion battery. Journal of Materials Chemistry A, 2015, 3, 404-411.	5.2	130
101	Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. Journal of Power Sources, 2015, 275, 200-206.	4.0	84
102	Facile synthesis of porous V2O3/C composites as lithium storage material with enhanced capacity and good rate capability. Journal of Power Sources, 2015, 275, 392-398.	4.0	48
103	Synthesis and Electrochemical Properties of Nano WO3/C Composite for Lithium-Ion Batteries. ECS Transactions, 2014, 62, 9-18.	0.3	4
104	The Mechanism of the Oneâ€Step Synthesis of Hollowâ€Structured Li ₃ VO ₄ as an Anode for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 5608-5612.	1.7	38
105	Enhancing the High Rate Capability and Cycling Stability of LiMn ₂ O ₄ by Coating of Solid-State Electrolyte LiNbO ₃ . ACS Applied Materials & Interfaces, 2014, 6, 22155-22165.	4.0	75
106	Tuning three-dimensional TiO2 nanotube electrode to achieve high utilization of Ti substrate for lithium storage. Electrochimica Acta, 2014, 133, 570-577.	2.6	36
107	A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4613.	5.2	37
108	Microwave autoclave synthesized multi-layer graphene/single-walled carbon nanotube composites for free-standing lithium-ion battery anodes. Carbon, 2014, 66, 637-645.	5.4	49

#	Article	IF	CITATIONS
109	High performance pure sulfur honeycomb-like architectures synthesized by a cooperative self-assembly strategy for lithium–sulfur batteries. RSC Advances, 2014, 4, 36513-36516.	1.7	8
110	Highly oriented LiFePO4 thin film electrodes via chemical solution deposition. Solid State Ionics, 2014, 268, 117-124.	1.3	5
111	Reversible sodium storage via conversion reaction of a MoS ₂ –C composite. Chemical Communications, 2014, 50, 10730-10733.	2.2	105
112	Porous Ni0.5Zn0.5Fe2O4 Nanospheres: Synthesis, Characterization, and Application for Lithium Storage. Electrochimica Acta, 2014, 147, 143-150.	2.6	16
113	Sn _{4+<i>x</i>} P ₃ @ Amorphous Snâ€P Composites as Anodes for Sodiumâ€lon Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability. Advanced Materials, 2014, 26, 4037-4042.	11.1	298
114	Rapid synthesis of Li4Ti5O12/graphene composite with superior rate capability by a microwave-assisted hydrothermal method. Nano Energy, 2014, 8, 297-304.	8.2	77
115	Hollow MnCo ₂ O ₄ Submicrospheres with Multilevel Interiors: From Mesoporous Spheres to Yolk-in-Double-Shell Structures. ACS Applied Materials & Interfaces, 2014, 6, 24-30.	4.0	187
116	A solvothermal strategy: one-step in situ synthesis of self-assembled 3D graphene-based composites with enhanced lithium storage capacity. Journal of Materials Chemistry A, 2014, 2, 9200-9207.	5.2	56
117	Synthesis and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathode Material. Journal of Electronic Materials, 2014, 43, 3508-3513.	1.0	4
118	Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics, 2014, 16, 20347-20359.	1.3	347
119	Synthesis and electrochemical properties of VO /C nanofiber composite for lithium ion battery application. Materials Letters, 2014, 117, 134-137.	1.3	8
120	Novel Germanium/Polypyrrole Composite for High Power Lithium-ion Batteries. Scientific Reports, 2014, 4, 6095.	1.6	63
121	In-situ One-step Hydrothermal Synthesis of a Lead Germanate-Graphene Composite as a Novel Anode Material for Lithium-Ion Batteries. Scientific Reports, 2014, 4, 7030.	1.6	16
122	Rapid synthesis of free-standing MoO3/Graphene films by the microwave hydrothermal method as cathode for bendable lithium batteries. Journal of Power Sources, 2013, 228, 198-205.	4.0	116
123	In situ one-step synthesis of a 3D nanostructured germanium–graphene composite and its application in lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10798.	5.2	69
124	ZnO-doped LiFePO4 cathode material for lithium-ion battery fabricated by hydrothermal method. Materials Chemistry and Physics, 2013, 141, 835-841.	2.0	26
125	LiNi0.5Mn1.5O4 spinel cathode using room temperature ionic liquid as electrolyte. Electrochimica Acta, 2013, 101, 151-157.	2.6	37
126	Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. Journal of Materials Chemistry A, 2013, 1, 15292.	5.2	151

#	Article	IF	CITATIONS
127	In-situ hydrothermal synthesis of graphene woven VO2 nanoribbons with improved cycling performance. Journal of Power Sources, 2013, 244, 684-689.	4.0	63
128	Hollow Structured Li ₃ VO ₄ Wrapped with Graphene Nanosheets in Situ Prepared by a One-Pot Template-Free Method as an Anode for Lithium-Ion Batteries. Nano Letters, 2013, 13, 4715-4720.	4.5	303
129	Polypyrrole-coated α-LiFeO2 nanocomposite with enhanced electrochemical properties for lithium-ion batteries. Electrochimica Acta, 2013, 108, 820-826.	2.6	40
130	Development of MoS ₂ –CNT Composite Thin Film from Layered MoS ₂ for Lithium Batteries. Advanced Energy Materials, 2013, 3, 798-805.	10.2	282
131	A hybrid electrolyte energy storage device with high energy and long life using lithium anode and MnO2 nanoflake cathode. Electrochemistry Communications, 2013, 31, 35-38.	2.3	24
132	Spinel LiNixMn2â~xO4 as cathode material for aqueous rechargeable lithium batteries. Electrochimica Acta, 2013, 93, 301-306.	2.6	89
133	A Conductive Polypyrrole oated, Sulfur–Carbon Nanotube Composite for Use in Lithium–Sulfur Batteries. ChemPlusChem, 2013, 78, 318-324.	1.3	57
134	Mesoporous hollow PtCu nanoparticles for electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 2391.	5.2	81
135	Synthesis and Electrochemical Performance of Grapheneâ€like WS ₂ . Chemistry - A European Journal, 2013, 19, 5694-5700.	1.7	104
136	PdNi Hollow Nanoparticles for Improved Electrocatalytic Oxygen Reduction in Alkaline Environments. ACS Applied Materials & amp; Interfaces, 2013, 5, 12708-12715.	4.0	108
137	Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage. Nano Letters, 2013, 13, 5480-5484.	4.5	390
138	CuS Nanoflakes, Microspheres, Microflowers, and Nanowires: Synthesis and Lithium Storage Properties. Journal of Nanoscience and Nanotechnology, 2013, 13, 1309-1316.	0.9	17
139	MnO@Carbon Core–Shell Nanowires as Stable Highâ€Performance Anodes for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2013, 19, 11310-11319.	1.7	111
140	One-Step Spray Pyrolysis Synthesized CuO-Carbon Composite Combined with Carboxymethyl Cellulose Binder as Anode for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 1314-1317.	0.9	4
141	Enhanced Cycling Performance of Nanocrystalline Fe ₃ O ₄ /C as Anode Material for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 1246-1250.	0.9	3
142	Lithium storage in commercial MoS2 in different potential ranges. Electrochimica Acta, 2012, 81, 155-160.	2.6	175
143	Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. Journal of Materials Chemistry, 2012, 22, 16465.	6.7	206
144	Direct Evidence of Concurrent Solid-Solution and Two-Phase Reactions and the Nonequilibrium Structural Evolution of LiFePO ₄ . Journal of the American Chemical Society, 2012, 134, 7867-7873.	6.6	135

#	Article	IF	CITATIONS
145	Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery. Journal of Power Sources, 2012, 220, 47-53.	4.0	60
146	All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochimica Acta, 2012, 83, 209-215.	2.6	56
147	Impact of mechanical bending on the electrochemical performance of bendable lithium batteries with paper-like free-standing V2O5–polypyrrole cathodes. Journal of Materials Chemistry, 2012, 22, 11159.	6.7	44
148	Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon, 2012, 50, 1289-1297.	5.4	179
149	Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochimica Acta, 2012, 60, 201-205.	2.6	60
150	Microporous gel polymer electrolytes for lithium rechargeable battery application. Journal of Power Sources, 2012, 201, 294-300.	4.0	163
151	LiFePO4–Fe2P–C composite cathode: An environmentally friendly promising electrode material for lithium-ion battery. Journal of Power Sources, 2012, 206, 259-266.	4.0	29
152	Indigo carmine (IC) doped polypyrrole (PPy) as a free-standing polymer electrode for lithium secondary battery application. Solid State Ionics, 2012, 215, 29-35.	1.3	29
153	Irradiation Si on Carbon Nanotube Paper as a Flexible Anode Material for Lithium-Ion Batteries. Nanoscience and Nanotechnology Letters, 2012, 4, 169-172.	0.4	0
154	Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries. Journal of Materials Research, 2011, 26, 860-866.	1.2	36
155	SnO ₂ –Graphene Composite Synthesized via an Ultrafast and Environmentally Friendly Microwave Autoclave Method and Its Use as a Superior Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 25115-25120.	1.5	147
156	Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. Dalton Transactions, 2011, 40, 12801.	1.6	62
157	Rapid Synthesis of Li ₄ Ti ₅ O ₁₂ Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery. Journal of Physical Chemistry C, 2011, 115, 16220-16227.	1.5	368
158	Nanocrystalline porous α-LiFeO ₂ –C composite—an environmentally friendly cathode for the lithium-ion battery. Energy and Environmental Science, 2011, 4, 952-957.	15.6	61
159	Synthesis of carbon coated nanocrystalline porous α-LiFeO2 composite and its application as anode for the lithium ion battery. Journal of Alloys and Compounds, 2011, 509, 5408-5413.	2.8	23
160	Rapid synthesis of binary α-NiS–β-NiS by microwave autoclave for rechargeable lithium batteries. Electrochimica Acta, 2011, 58, 456-462.	2.6	65
161	The compatibility of transition metal oxide/carbon composite anode and ionic liquid electrolyte for the lithium-ion battery. Journal of Applied Electrochemistry, 2011, 41, 1261-1267.	1.5	17
162	Large‣cale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Advanced Materials, 2011, 23, 3944-3948.	11.1	1,012

#	Article	IF	CITATIONS
163	Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li ₄ Ti ₅ O ₁₂ â€TiO ₂ : A Nanocomposite Anode Material for Liâ€ion Batteries. Advanced Energy Materials, 2011, 1, 212-220.	10.2	281
164	Grapheneâ€Encapsulated Fe ₃ O ₄ Nanoparticles with 3D Laminated Structure as Superior Anode in Lithium Ion Batteries. Chemistry - A European Journal, 2011, 17, 661-667.	1.7	395
165	Synthesis and electrochemical performance of LiV3O8/carbon nanosheet composite as cathode material for lithium-ion batteries. Composites Science and Technology, 2011, 71, 343-349.	3.8	51
166	Synthesis and characterization of graphene–nickel oxide nanostructures for fast charge–discharge application. Electrochimica Acta, 2011, 56, 5815-5822.	2.6	141
167	Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources, 2011, 196, 7030-7034.	4.0	362
168	High capacity and high rate capability of nanostructured CuFeO2 anode materials for lithium-ion batteries. Journal of Power Sources, 2011, 196, 7025-7029.	4.0	49
169	Hollow hematite nanosphere/carbon nanotube composite: mass production and its high-rate lithium storage properties. Nanotechnology, 2011, 22, 265401.	1.3	30
170	Spray pyrolyzed NiO–C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State Ionics, 2010, 180, 1646-1651.	1.3	144
171	Basic molten salt process—A new route for synthesis of nanocrystalline Li4Ti5O12–TiO2 anode material for Li-ion batteries using eutectic mixture of LiNO3–LiOH–Li2O2. Journal of Power Sources, 2010, 195, 4297-4303.	4.0	85
172	Silver-coated TiO2 nanostructured anode materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 571-578.	1.2	40
173	Hydrothermal synthesis of nanostructured MnO2 under magnetic field for rechargeable lithium batteries. Journal of Solid State Electrochemistry, 2010, 14, 1743-1747.	1.2	8
174	Nanocrystalline NiO hollow spheres in conjunction with CMC for lithium-ion batteries. Journal of Applied Electrochemistry, 2010, 40, 1415-1419.	1.5	29
175	Flexible free-standing graphene-silicon composite film for lithium-ion batteries. Electrochemistry Communications, 2010, 12, 1467-1470.	2.3	234
176	Electrode reactions of manganese oxides for secondary lithium batteries. Electrochemistry Communications, 2010, 12, 1520-1523.	2.3	242
177	SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochimica Acta, 2010, 56, 314-320.	2.6	107
178	Enhanced lithium storage in a VO2(B)-multiwall carbon nanotube microsheet composite prepared via an in situ hydrothermal process. Electrochimica Acta, 2010, 56, 693-699.	2.6	65
179	Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications, 2010, 12, 303-306.	2.3	402
180	Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 15862-15867.	1.5	128

#	Article	IF	CITATIONS
181	Direct scattered growth of MWNT on Si for high performance anode material in Li-ion batteries. Chemical Communications, 2010, 46, 9149.	2.2	44
182	High-surface-area α-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. Journal of Materials Chemistry, 2010, 20, 2092.	6.7	228
183	Si-based anode materials for lithium rechargeable batteries. Journal of Materials Chemistry, 2010, 20, 10055.	6.7	120
184	Electrochemical Deposition of Porous VO _x and MnO ₂ Nanowires on Stainless Steel Mesh for Flexible Supercapacitors. Advanced Science Letters, 2010, 3, 295-298.	0.2	10
185	Self-Oriented Ca[sub 3]Co[sub 4]O[sub 9] Thin Film as an Anode Material for Enhanced Cycling Stability of Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2009, 12, A176.	2.2	10
186	Highly flexible and bendable free-standing thin film polymer for battery application. Materials Letters, 2009, 63, 2352-2354.	1.3	40
187	Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells. Electrochimica Acta, 2009, 54, 1733-1736.	2.6	226
188	A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochimica Acta, 2009, 54, 7519-7524.	2.6	80
189	Hydrothermal synthesis of nanostructured Co3O4 materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery. Electrochimica Acta, 2009, 55, 504-510.	2.6	93
190	Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method. Journal of Power Sources, 2009, 189, 449-453.	4.0	41
191	SnO2 meso-scale tubes: One-step, room temperature electrodeposition synthesis and kinetic investigation for lithium storage. Electrochemistry Communications, 2009, 11, 242-246.	2.3	56
192	Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon, 2009, 47, 2976-2983.	5.4	306
193	Flame spray-pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes. Physical Chemistry Chemical Physics, 2009, 11, 3748.	1.3	112
194	Carbon nanotube network modified carbon fibre paper for Li-ion batteries. Energy and Environmental Science, 2009, 2, 393.	15.6	106
195	Foam-like, microstructural SnO ₂ –carbon composite thin films synthesized via a polyol-assisted thermal decomposition method. Dalton Transactions, 2009, , 723-729.	1.6	2
196	Electrochemical Performance of Nanocrystalline SnO ₂ -Carbon Nanotube Composites as Anode in Lithium-Ion Cells. Journal of Nanoscience and Nanotechnology, 2009, 9, 1474-1478.	0.9	4
197	Lithium-polymer battery based on an ionic liquid–polymer electrolyte composite for room temperature applications. Electrochimica Acta, 2008, 53, 6460-6463.	2.6	38
198	Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. Journal of Power Sources, 2008, 182, 359-364.	4.0	118

#	Article	IF	CITATIONS
199	Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon, 2008, 46, 229-235.	5.4	361
200	Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries. Solid State Ionics, 2008, 179, 2379-2382.	1.3	71
201	Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochemistry Communications, 2008, 10, 165-169.	2.3	114
202	Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochemistry Communications, 2008, 10, 1724-1727.	2.3	419
203	Paper-like free-standing polypyrrole and polypyrrole–LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochemistry Communications, 2008, 10, 1781-1784.	2.3	86
204	Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochemistry Communications, 2008, 10, 1879-1882.	2.3	239
205	Hexagonalâ€5haped Tin Glycolate Particles: A Preliminary Study of Their Suitability as Liâ€Ion Insertion Electrodes. Chemistry - an Asian Journal, 2008, 3, 854-861.	1.7	11
206	High Capacity, Safety, and Enhanced Cyclability of Lithium Metal Battery Using a V ₂ O ₅ Nanomaterial Cathode and Room Temperature Ionic Liquid Electrolyte. Chemistry of Materials, 2008, 20, 7044-7051.	3.2	205
207	Electrochemical Deposition of Porous Co(OH)[sub 2] Nanoflake Films on Stainless Steel Mesh for Flexible Supercapacitors. Journal of the Electrochemical Society, 2008, 155, A926.	1.3	64
208	Electrochemistry of LiV[sub 3]O[sub 8] Nanoparticles Made by Flame Spray Pyrolysis. Electrochemical and Solid-State Letters, 2008, 11, A46.	2.2	58
209	Characterization of Nanosize Molybdenum Trisulfide for Lithium Batteries and MoS[sub 3] Structure Confirmation via Electrochemistry. Electrochemical and Solid-State Letters, 2007, 10, A204.	2.2	10
210	Flexible, Aligned Carbon Nanotube/Conducting Polymer Electrodes for a Lithium-Ion Battery. Chemistry of Materials, 2007, 19, 3595-3597.	3.2	212
211	Low-Temperature Synthesis of Polypyrrole-Coated LiV[sub 3]O[sub 8] Composite with Enhanced Electrochemical Properties. Journal of the Electrochemical Society, 2007, 154, A633.	1.3	62
212	Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for the rechargeable lithium battery. Electrochemistry Communications, 2007, 9, 1877-1880.	2.3	83
213	Novel nano-silicon/polypyrrole composites for lithium storage. Electrochemistry Communications, 2007, 9, 941-946.	2.3	141
214	Polyol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-ion storage. Electrochemistry Communications, 2007, 9, 915-919.	2.3	40
215	Spray-pyrolyzed silicon/disordered carbon nanocomposites for lithium-ion battery anodes. Journal of Power Sources, 2007, 174, 823-827.	4.0	43
216	Synthesis and characterization of SnO2–polypyrrole composite for lithium-ion battery. Journal of Power Sources, 2007, 174, 1183-1187.	4.0	96

#	Article	IF	CITATIONS
217	Synthesis and electrochemical properties of LiY0.1V3O8. Journal of Power Sources, 2007, 174, 548-551.	4.0	31
218	Amorphous Carbon-Coated Silicon Nanocomposites:  A Low-Temperature Synthesis via Spray Pyrolysis and Their Application as High-Capacity Anodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2007, 111, 11131-11138.	1.5	211
219	Synthesis and electrochemical properties of V2O5 nanostructures prepared via a precipitation process for lithium-ion battery cathodes. Journal of Power Sources, 2007, 174, 1032-1035.	4.0	112
220	An investigation of polypyrrole–LiV3O8 composite cathode materials for lithium-ion batteries. Journal of Power Sources, 2007, 174, 1095-1099.	4.0	66
221	Electrochemical Hydrogen Storage in Single-Walled Carbon Nanotube Paper. Journal of Nanoscience and Nanotechnology, 2006, 6, 713-718.	0.9	11
222	In situ fabrication of spherical porous tin oxide via a spray pyrolysis technique. Electrochimica Acta, 2006, 51, 3680-3684.	2.6	19
223	Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochimica Acta, 2006, 51, 4634-4638.	2.6	265
224	Lithium–Polymer battery based on polybithiophene as cathode material. Journal of Power Sources, 2006, 159, 708-711.	4.0	20
225	Nanostructured PbO materials obtained in situ by spray solution technique for Li-ion batteries. Journal of Power Sources, 2006, 159, 241-244.	4.0	48
226	A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries. Journal of Power Sources, 2006, 159, 282-286.	4.0	77
227	Highly-flexible fibre battery incorporating polypyrrole cathode and carbon nanotubes anode. Journal of Power Sources, 2006, 161, 1458-1462.	4.0	52
228	An investigation on electrochemical behavior of nanosize zinc sulfide electrode in lithium-ion cells. Journal of Solid State Electrochemistry, 2006, 10, 250-254.	1.2	34
229	Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries. Journal of Power Sources, 2006, 159, 287-290.	4.0	103
230	Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries. Angewandte Chemie - International Edition, 2006, 45, 6896-6899.	7.2	656
231	Nanomaterials for Lithium-ion Rechargeable Batteries. Journal of Nanoscience and Nanotechnology, 2006, 6, 1-15.	0.9	127
232	Spray Pyrolyzed PbO-Carbon Nanocomposites as Anode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2006, 153, A787.	1.3	58
233	Novel electrode substrates for rechargeable lithium/polypyrrole batteries. Journal of Power Sources, 2005, 140, 162-167.	4.0	71
234	A highly flexible polymer fibre battery. Journal of Power Sources, 2005, 150, 223-228.	4.0	63

#	Article	IF	CITATIONS
235	Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. Journal of Power Sources, 2005, 146, 448-451.	4.0	172
236	An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochimica Acta, 2005, 50, 4649-4654.	2.6	241
237	Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochimica Acta, 2005, 51, 23-28.	2.6	263
238	Enhancement of Ionic Conductivity of PEO Based Polymer Electrolyte by the Addition of Nanosize Ceramic Powders. Journal of Nanoscience and Nanotechnology, 2005, 5, 1135-1140.	0.9	41
239	Silicon/Disordered Carbon Nanocomposites for Lithium-Ion Battery Anodes. Journal of the Electrochemical Society, 2005, 152, A2211.	1.3	86
240	Electrochemical synthesis of polypyrrole films using stainless steel mesh as substrate for battery application. Synthetic Metals, 2005, 153, 117-120.	2.1	24
241	Influence of bismuth on hydrogen and oxygen evolution on lead-calcium-tin-aluminium grid alloys. Journal of Power Sources, 1997, 66, 159-164.	4.0	6