Daniel Hoyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3068440/publications.pdf

Version: 2024-02-01

DANIEL HOVED

#	Article	IF	CITATIONS
1	Explaining the rise of moralizing religions: a test of competing hypotheses using the Seshat Databank. Religion, Brain and Behavior, 2023, 13, 167-194.	0.4	13
2	Testing the Big Gods hypothesis with global historical data: a review and "retake― Religion, Brain and Behavior, 2023, 13, 124-166.	0.4	12
3	Big Gods and big science: further reflections on theory, data, and analysis. Religion, Brain and Behavior, 2023, 13, 218-231.	0.4	3
4	Hypocretins (orexins): The ultimate translational neuropeptides. Journal of Internal Medicine, 2022, 291, 533-556.	2.7	42
5	Differential sleep/wake response and sex differences following acute suvorexant, MKâ€1064 and zolpidem administration in the rTg4510 mouse model of tauopathy. British Journal of Pharmacology, 2022, 179, 3403-3417.	2.7	5
6	Losing sleep with age. Science, 2022, 375, 816-817.	6.0	4
7	Orexin Signaling: A Complex, Multifaceted Process. Frontiers in Cellular Neuroscience, 2022, 16, 812359.	1.8	15
8	Disentangling the evolutionary drivers of social complexity: A comprehensive test of hypotheses. Science Advances, 2022, 8, .	4.7	15
9	SMAD4 protein is decreased in the dorsolateral prefrontal and anterior cingulate cortices in schizophrenia. World Journal of Biological Psychiatry, 2021, 22, 70-77.	1.3	4
10	Serotoninergic System. , 2021, , 1-7.		0
11	Orexin / hypocretin receptor antagonists and agonists in neuropsychiatric disorders. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 2-PL.	0.0	0
12	Decreased Orexin Receptor 1 mRNA Expression in the Locus Coeruleus in Both Tau Transgenic rTg4510 and Tau Knockout Mice and Accompanying Ascending Arousal System Tau Invasion in rTg4510. Journal of Alzheimer's Disease, 2021, 79, 693-708.	1.2	7
13	An integrative approach to estimating productivity in past societies using <i>Seshat: Global History Databank</i> . Holocene, 2021, 31, 1055-1065.	0.9	8
14	Medicinal psychedelics for mental health and addiction: Advancing research of an emerging paradigm. Australian and New Zealand Journal of Psychiatry, 2021, 55, 1127-1133.	1.3	24
15	Manipulation of rapid eye movement sleep via orexin and GABAA receptor modulators differentially affects fear extinction in mice: effect of stable versus disrupted circadian rhythm. Sleep, 2021, 44, .	0.6	10
16	Reward motivation and cognitive flexibility in tau null-mutation mice. Neurobiology of Aging, 2021, 100, 106-117.	1.5	1
17	Development of a LC-ESI-MRM method for the absolute quantification of orexin A in the CSF of individual mice. Medicine in Drug Discovery, 2021, 11, 100102.	2.3	3
18	Orexin receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	4

#	Article	IF	CITATIONS
19	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	2.7	337
20	International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function. Pharmacological Reviews, 2021, 73, 310-520.	7.1	127
21	Rise of the war machines: Charting the evolution of military technologies from the Neolithic to the Industrial Revolution. PLoS ONE, 2021, 16, e0258161.	1.1	18
22	Serotoninergic System. , 2021, , 1409-1415.		0
23	Synthesis and structureâ^activity relationships of teixobactin. Annals of the New York Academy of Sciences, 2020, 1459, 86-105.	1.8	26
24	Hypnotics with novel modes of action. British Journal of Clinical Pharmacology, 2020, 86, 244-249.	1.1	25
25	Targeting the 5-HT system: Potential side effects. Neuropharmacology, 2020, 179, 108233.	2.0	22
26	The Killing Mechanism of Teixobactin against Methicillin-Resistant Staphylococcus aureus: an Untargeted Metabolomics Study. MSystems, 2020, 5, .	1.7	33
27	Effects of orexin receptor antagonism on human sleep architecture: A systematic review. Sleep Medicine Reviews, 2020, 53, 101332.	3.8	39
28	Circadian disruption impairs fear extinction and memory of conditioned safety in mice. Behavioural Brain Research, 2020, 393, 112788.	1.2	4
29	Curcumin Attenuates Colistin-Induced Peripheral Neurotoxicity in Mice. ACS Infectious Diseases, 2020, 6, 715-724.	1.8	29
30	Distribution of 5-HT receptors in the central nervous system: an update. Handbook of Behavioral Neuroscience, 2020, 31, 121-146.	0.7	6
31	The impact of backbone N â€methylation on the structureâ€activity relationship of Leu 10 â€ŧeixobactin. Journal of Peptide Science, 2019, 25, e3206.	0.8	6
32	Serotonin receptors nomenclature. , 2019, , 63-93.		5
33	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	2.7	519
34	Metabolomics Study of the Synergistic Killing of Polymyxin B in Combination with Amikacin against Polymyxin-Susceptible and -Resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2019, 64, .	1.4	28
35	Sex: A change in our guidelines to authors to ensure that this is no longer an ignored experimental variable. British Journal of Pharmacology, 2019, 176, 4081-4086.	2.7	56
36	T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Archives of Toxicology, 2019, 93, 3041-3056.	1.9	89

#	Article	IF	CITATIONS
37	Sex differences in mouse models of fear inhibition: Fear extinction, safety learning, and fear–safety discrimination. British Journal of Pharmacology, 2019, 176, 4149-4158.	2.7	40
38	The BJP expects authors to share data. British Journal of Pharmacology, 2019, 176, 4595-4598.	2.7	2
39	Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. ACS Chemical Neuroscience, 2019, 10, 120-131.	1.7	45
40	Contemporary Anti-Ebola Drug Discovery Approaches and Platforms. ACS Infectious Diseases, 2019, 5, 35-48.	1.8	3
41	5-Hydroxytryptamine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
42	Separating Probability and Reversal Learning in a Novel Probabilistic Reversal Learning Task for Mice. Frontiers in Behavioral Neuroscience, 2019, 13, 270.	1.0	23
43	Somatostatin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
44	Animal Models of Addiction and Neuropsychiatric Disorders and Their Role in Drug Discovery: Honoring the Legacy of Athina Markou. Biological Psychiatry, 2018, 83, 940-946.	0.7	25
45	Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 2018, 175, 407-411.	2.7	519
46	Rapamycin Confers Neuroprotection against Colistin-Induced Oxidative Stress, Mitochondria Dysfunction, and Apoptosis through the Activation of Autophagy and mTOR/Akt/CREB Signaling Pathways. ACS Chemical Neuroscience, 2018, 9, 824-837.	1.7	67
47	Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E144-E151.	3.3	121
48	Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 2018, 175, 987-993.	2.7	1,122
49	The potentially beneficial central nervous system activity profile of ivacaftor and its metabolites. ERJ Open Research, 2018, 4, 00127-2017.	1.1	21
50	Sputum Active Polymyxin Lipopeptides: Activity against Cystic FibrosisPseudomonas aeruginosalsolates and Their Interactions with Sputum Biomolecules. ACS Infectious Diseases, 2018, 4, 646-655.	1.8	19
51	Polymyxins for CNS infections: Pharmacology and neurotoxicity. , 2018, 181, 85-90.		71
52	Mechanistic Insights From Global Metabolomics Studies into Synergistic Bactericidal Effect of a Polymyxin B Combination With Tamoxifen Against Cystic Fibrosis MDR Pseudomonas aeruginosa. Computational and Structural Biotechnology Journal, 2018, 16, 587-599.	1.9	19
53	A Comparative Study of Outer Membrane Proteome between Paired Colistin-Susceptible and Extremely Colistin-Resistant <i>Klebsiella pneumoniae</i> Strains. ACS Infectious Diseases, 2018, 4, 1692-1704.	1.8	15
54	A Systematic Assessment of "Axial Age―Proposals Using Global Comparative Historical Evidence. American Sociological Review, 2018, 83, 596-626.	2.8	22

#	Article	IF	CITATIONS
55	Reply to Tosh et al.: Quantitative analyses of cultural evolution require engagement with historical and archaeological research. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5841-E5842.	3.3	1
56	Lemborexant. Dual orexin receptor antagonist, Treatment of insomnia. Drugs of the Future, 2018, 43, 0715.	0.0	6
57	How regulatory aspects shape preclinical and clinical research. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY69-2.	0.0	0
58	Blunted 5-HT1A receptor-mediated responses and antidepressant-like behavior in mice lacking the GABAB1a but not GABAB1b subunit isoforms. Psychopharmacology, 2017, 234, 1511-1523.	1.5	9
59	5-HT Receptor Nomenclature: Naming Names, Does It Matter? A Tribute to Maurice Rapport. ACS Chemical Neuroscience, 2017, 8, 908-919.	1.7	11
60	A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment. Psychopharmacology, 2017, 234, 1395-1418.	1.5	71
61	Saving, changing and repairing lives. Impact, 2017, 2017, 62-64.	0.0	0
62	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	2.7	269
63	Updating the guidelines for data transparency in the British Journal of Pharmacology – data sharing and the use of scatter plots instead of bar charts. British Journal of Pharmacology, 2017, 174, 2801-2804.	2.7	41
64	Orexin Receptor Antagonists. Current Sleep Medicine Reports, 2017, 3, 342-353.	0.7	1
65	Astrocytes: Adhesion Molecules and Immunomodulation. Current Drug Targets, 2016, 17, 1871-1881.	1.0	46
66	Hippocampal 5â€HT ₇ receptors signal phosphorylation of the GluA1 subunit to facilitate AMPA receptor mediatedâ€neurotransmission <i>in vitro</i> and <i>in vivo</i> . British Journal of Pharmacology, 2016, 173, 1438-1451.	2.7	21
67	Orexin OX2 Receptor Antagonists as Sleep Aids. Current Topics in Behavioral Neurosciences, 2016, 33, 105-136.	0.8	28
68	Editorial: Reporting guidelines for psychopharmacology. Psychopharmacology, 2016, 233, 1131-1134.	1.5	3
69	Experimental design and analysis and their reporting: new guidance for publication in <scp>BJP</scp> . British Journal of Pharmacology, 2015, 172, 3461-3471.	2.7	981
70	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	2.7	220
71	The Concise Guide to PHARMACOLOGY 2015/16: Ligandâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5870-5903.	2.7	133
72	The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 2015, 172, 5956-5978.	2.7	119

#	Article	IF	CITATIONS
73	The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. British Journal of Pharmacology, 2015, 172, 6024-6109.	2.7	521
74	The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology, 2015, 172, 6110-6202.	2.7	190
75	The Concise Guide to PHARMACOLOGY 2015/16: G protein oupled receptors. British Journal of Pharmacology, 2015, 172, 5744-5869.	2.7	507
76	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	2.7	176
77	The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors. British Journal of Pharmacology, 2015, 172, 5979-6023.	2.7	158
78	The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. British Journal of Pharmacology, 2015, 172, 5942-5955.	2.7	40
79	<scp>AQW</scp> 051, a novel, potent and selective <scp>α</scp> 7 nicotinic <scp>ACh</scp> receptor partial agonist: pharmacological characterization and phase <scp>I</scp> evaluation. British Journal of Pharmacology, 2015, 172, 1292-1304.	2.7	27
80	Discovery of 1 H -pyrazolo[3,4- b]pyridines as potent dual orexin receptor antagonists (DORAs). Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5555-5560.	1.0	14
81	Somatostatin. , 2015, , 1614-1619.		0
82	Suvorexant for the treatment of insomnia. Expert Review of Clinical Pharmacology, 2014, 7, 711-730.	1.3	40
83	Molecular Basis of Purinergic Signal Metabolism by Ectonucleotide Pyrophosphatase/Phosphodiesterases 4 and 1 and Implications in Stroke*. Journal of Biological Chemistry, 2014, 289, 3294-3306.	1.6	37
84	SOM230: A New Therapeutic Modality for Cushing's Disease. Chimia, 2014, 68, 483-484.	0.3	4
85	Somatostatin. , 2014, , 1-6.		0
86	Identification of a Novel Series of Orexin Receptor Antagonists with a Distinct Effect on Sleep Architecture for the Treatment of Insomnia. Journal of Medicinal Chemistry, 2013, 56, 7590-7607.	2.9	82
87	Orexin in sleep, addiction and more: Is the perfect insomnia drug at hand?. Neuropeptides, 2013, 47, 477-488.	0.9	98
88	Adult siRNA-induced knockdown of mGlu7 receptors reduces anxiety in the mouse. Neuropharmacology, 2013, 72, 66-73.	2.0	27
89	An invitation for comprehensive single-compound reviews on the pharmacological properties of newly launched drugs. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 1019-1020.	1.4	0
90	Kinetic properties of "dual―orexin receptor antagonists at OX1R and OX2R orexin receptors. Frontiers in Neuroscience, 2013, 7, 230.	1.4	28

#	Article	IF	CITATIONS
91	Distinct effects of IPSU and suvorexant on mouse sleep architecture. Frontiers in Neuroscience, 2013, 7, 235.	1.4	33
92	The Dual Orexin Receptor Antagonist Almorexant Induces Sleep and Decreases Orexin-Induced Locomotion by Blocking Orexin 2 Receptors. Sleep, 2012, 35, 1625-1635.	0.6	85
93	Neuropeptides and Neuropeptide Receptors: Drug Targets, and Peptide and Nonâ€Peptide Ligands: a Tribute to Prof. <i>Dieter Seebach</i> . Chemistry and Biodiversity, 2012, 9, 2367-2387.	1.0	91
94	Neuropeptidomics of mouse hypothalamus after imipramine treatment reveal somatostatin as a potential mediator of antidepressant effects. Neuropharmacology, 2012, 62, 347-357.	2.0	27
95	The Making of the 5-HT2C Receptor. Receptors, 2011, , 1-16.	0.2	1
96	Hippocampal sst1 receptors are autoreceptors and do not affect seizures in rats. NeuroReport, 2010, 21, 254-258.	0.6	15
97	Somatostatin-28 modulates prepulse inhibition of the acoustic startle response, reward processes and spontaneous locomotor activity in rats. Neuropeptides, 2010, 44, 421-429.	0.9	7
98	Decahydroisoquinoline derivatives as novel non-peptidic, potent and subtype-selective somatostatin sst3 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1728-1734.	1.0	15
99	The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington's disease. Molecular Neurodegeneration, 2010, 5, 26.	4.4	86
100	Reviewer comments on Reflections on drug research by Sir James Black. British Journal of Pharmacology, 2010, 161, 1217-1217.	2.7	0
101	Neuropeptide receptor positive allosteric modulation in epilepsy: Galanin modulation revealed. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14943-14944.	3.3	5
102	Reaction of Fe3(CO)12 with octreotide—chemical, electrochemical and biological investigations. Dalton Transactions, 2010, 39, 3065.	1.6	14
103	Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience, 2010, 167, 1160-1167.	1.1	45
104	Distribution of 5-HT Receptors in the Central Nervous System. Handbook of Behavioral Neuroscience, 2010, , 123-138.	0.7	27
105	Antidepressants Influence Somatostatin Levels and Receptor Pharmacology in Brain. Neuropsychopharmacology, 2009, 34, 952-963.	2.8	22
106	NMRâ€Solution Structures and Affinities for the Human Somatostatin Gâ€Proteinâ€Coupled Receptors hsst _{1–5} of CF ₃ Derivatives of <i>Sandostatin</i> [®] (Octreotide <i>)</i> . Helvetica Chimica Acta, 2009, 92, 2577-2586.	1.0	27
107	Selective effects of benzodiazepines on the acquisition of conditioned taste aversion compared to attenuation of neophobia in C57BL/6 mice. Psychopharmacology, 2009, 206, 389-401.	1.5	4
108	Discovery of novel non-peptidic β-alanine piperazine amide derivatives and their optimization to achiral, easily accessible, potent and selective somatostatin sst1 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1305-1309.	1.0	12

#	Article	IF	CITATIONS
109	Novel, Potent, and Radio-Iodinatable Somatostatin Receptor 1 (sst1) Selective Analogues. Journal of Medicinal Chemistry, 2009, 52, 2733-2746.	2.9	36
110	The selective nicotinic acetylcholine receptor α7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology, 2009, 56, 254-263.	2.0	192
111	Somatostatin, Alzheimer's disease and cognition: An old story coming of age?. Progress in Neurobiology, 2009, 89, 153-161.	2.8	83
112	New Perspective in Peptide Chemistry by N-Alkylation. Advances in Experimental Medicine and Biology, 2009, 611, 229-231.	0.8	5
113	New Openâ€Chain and Cyclic Tetrapeptides, Consisting of <i>α</i> â€; <i>β</i> ² â€; and <i>β</i> ³ â€Aminoâ€Acid Residues, as Somatostatin Mimics – A Survey. Helvetica Chimica Acta, 2008, 91, 1736-1786.	1.0	53
114	The Enantiomer of Octreotate Binds to All Five Somatostatin Receptors with Almost Equal Micromolar Affinity – A Comparison with <i>SANDOSTATIN</i> [®] . Chemistry and Biodiversity, 2008, 5, 1213-1224.	1.0	7
115	Improving Oral Bioavailability of Peptides by Multiple Nâ€Methylation: Somatostatin Analogues. Angewandte Chemie - International Edition, 2008, 47, 2595-2599.	7.2	310
116	Ergoline derivatives as highly potent and selective antagonists at the somatostatin sst1 receptor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 979-982.	1.0	9
117	mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Molecular Psychiatry, 2008, 13, 970-979.	4.1	116
118	Increased exploratory activity of APP23 mice in a novel environment is reversed by siRNA. Brain Research, 2008, 1243, 124-133.	1.1	13
119	Brain sphingosine-1-phosphate receptors: Implication for FTY720 in the treatment of multiple sclerosis. , 2008, 117, 77-93.		141
120	Pharmacological profile of somatostatin and cortistatin receptors. Molecular and Cellular Endocrinology, 2008, 286, 26-34.	1.6	71
121	Molecular biology of 5-HT receptors. Behavioural Brain Research, 2008, 195, 198-213.	1.2	675
122	The Rostral Anterior Cingulate Cortex Modulates the Efficiency of Amygdala-Dependent Fear Learning. Biological Psychiatry, 2008, 63, 821-831.	0.7	119
123	Molecular biology of 5-HT receptors. , 2008, , 155-182.		8
124	5-HT-4 Receptor. , 2008, , 1-16.		1
125	Serotoninergic System. , 2008, , 1120-1126.		0
126	Emerging use of non-viral RNA interference in the brain. Biochemical Society Transactions, 2007, 35, 411-415.	1.6	14

#	Article	IF	CITATIONS
127	JN403, in vitro characterization of a novel nicotinic acetylcholine receptor α7 selective agonist. Neuroscience Letters, 2007, 416, 61-65.	1.0	41
128	5-HT-1 Receptors. , 2007, , 1-3.		1
129	5-Hydroxytryptamine Receptors. , 2007, , 1-7.		2
130	ABP688, a novel selective and high affinity ligand for the labeling of mGlu5 receptors: Identification, in vitro pharmacology, pharmacokinetic and biodistribution studies. Bioorganic and Medicinal Chemistry, 2007, 15, 903-914.	1.4	66
131	SAR of the arylpiperazine moiety of obeline somatostatin sst1 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3988-3991.	1.0	10
132	Identification and SAR of potent and selective non-peptide obeline somatostatin sst1 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3983-3987.	1.0	9
133	Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Molecular Psychiatry, 2007, 12, 167-189.	4.1	180
134	5-HT-3 Receptor. , 2007, , 1-7.		0
135	5-HT-2C Receptor. , 2007, , 1-11.		0
136	5-HT-3B Receptor. , 2007, , 1-12.		0
137	5-HT-2B Receptor. , 2007, , 1-9.		0
138	5-HT-1B Receptor. , 2007, , 1-15.		0
139	5-HT-1F Receptor. , 2007, , 1-8.		0
140	5-HT-5 Receptors. , 2007, , 1.		0
141	SST-3 Somatostatin Receptor. , 2007, , 1-12.		0
142	5-HT-1D Receptor. , 2007, , 1-11.		0
143	SST-1 Somatostatin Receptor. , 2007, , 1-12.		0

#	Article	IF	CITATIONS
145	5-HT-1E Receptor. , 2007, , 1-8.		0
146	5-HT-6 Receptor. , 2007, , 1.		0
147	5-HT-3A Receptor. , 2007, , 1-15.		0
148	Somatostatin Receptors. , 2007, , 1-15.		0
149	5-HT-2 Receptors. , 2007, , 1-4.		0
150	SST-4 Somatostatin Receptor. , 2007, , 1-12.		0
151	5-HT-7 Receptor. , 2007, , 1.		0
152	SST-2 Somatostatin Receptor. , 2007, , 1-15.		0
153	5-HT-2A Receptor. , 2007, , 1-11.		0
154	5-HT-1A Receptor. , 2007, , 1-10.		0
155	RNA interference for studying the molecular basis of neuropsychiatric disorders. Current Opinion in Drug Discovery & Development, 2007, 10, 122-9.	1.9	4
156	Global Down-Regulation of Gene Expression in the Brain Using RNA Interference, with Emphasis on Monoamine Transporters and GPCRs: Implications for Target Characterization in Psychiatric and Neurological Disorders. Journal of Receptor and Signal Transduction Research, 2006, 26, 527-547.	1.3	20
157	RNA interference as a therapeutic strategy for treating CNS disorders. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 451-456.	0.5	1
158	Highly N-Methylated Somatostatin Analogs: Synthesis, Biological Activity and Structure-Activity Relationship Studies. , 2006, , 423-424.		0
159	Compensatory changes in the hippocampus of somatostatin knockout mice: upregulation of somatostatin receptor 2 and its function in the control of bursting activity and synaptic transmission. European Journal of Neuroscience, 2006, 23, 2404-2422.	1.2	37
160	Hyperdopaminergia and altered locomotor activity in GABAB1-deficient mice. Journal of Neurochemistry, 2006, 97, 979-991.	2.1	54
161	Somatostatin receptors in wildtype and somatostatin deficient mice and their involvement in nitric oxide physiology in the retina. Neuropeptides, 2006, 40, 365-373.	0.9	13
162	Interfering with the brain: Use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. , 2006, 109, 413-438.		63

#	Article	IF	CITATIONS
163	The somatostatin sst1 receptor: an autoreceptor for somatostatin in brain and retina?. , 2006, 110, 455-464.		49
164	Fish somatostatin sst3 receptor: comparison of radioligand and GTPgammaS binding, adenylate cyclase and phospholipase C activities reveals different agonist-dependent pharmacological signatures. Autonomic and Autacoid Pharmacology, 2005, 25, 1-16.	0.5	9
165	siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Molecular Psychiatry, 2005, 10, 782-789.	4.1	144
166	Paroxetine combined with a 5-HT1A receptor antagonist reversed reward deficits observed during amphetamine withdrawal in rats. Psychopharmacology, 2005, 178, 133-142.	1.5	26
167	Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E278-E287.	1.8	133
168	Somatostatin Receptor 1 Selective Analogues: 2. Nα-Methylated Scanâ€. Journal of Medicinal Chemistry, 2005, 48, 507-514.	2.9	20
169	Coupling of human nicotinic acetylcholine receptors α7 to calcium channels in GH3 cells. Neuropharmacology, 2005, 48, 215-227.	2.0	47
170	Binding and functional properties of the novel somatostatin analogue KE 108 at native mouse somatostatin receptors. Neuropharmacology, 2005, 48, 881-893.	2.0	24
171	Applications of a Rat Multiple Tissue Gene Expression Data Set. Genome Research, 2004, 14, 742-749.	2.4	73
172	Effect of Somatostatin on Nitric Oxide Production in Human Retinal Pigment Epithelium Cell Cultures. Investigative Ophthalmology and Visual Science, 2004, 45, 1499-1506.	3.3	31
173	Somatostatin receptors differentially affect spontaneous epileptiform activity in mouse hippocampal slices. European Journal of Neuroscience, 2004, 20, 2711-2721.	1.2	39
174	Comparison of functional profiles at human recombinant somatostatin sst2 receptor: simultaneous determination of intracellular Ca2+ and luciferase expression in CHO-K1 cells. British Journal of Pharmacology, 2004, 142, 150-160.	2.7	18
175	The NK1 receptor antagonist NKP608 lacks anxiolytic-like activity in Swiss-Webster mice exposed to the elevated plus-maze. Behavioural Brain Research, 2004, 154, 183-192.	1.2	14
176	The somatostatin receptor (sst1) modulates the release of somatostatin in the nucleus accumbens of the rat. Neuropharmacology, 2004, 47, 612-618.	2.0	26
177	SRA880, in vitro characterization of the first non-peptide somatostatin sst1 receptor antagonist. Neuroscience Letters, 2004, 361, 132-135.	1.0	35
178	Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17270-17275.	3.3	195
179	Somatostatin Receptor Gene Family - Subtype Selectivity for Ligand Binding. , 2004, , 81-106.		4
180	Functional characterisation of the putative somatostatin sst2 receptor antagonist CYN 154806. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 1-9.	1.4	41

#	Article	IF	CITATIONS
181	β2/β3-di- and α/β3-tetrapeptide derivatives as potent agonists at somatostatin sst4 receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 95-103.	1.4	49
182	Native somatostatin sst2 and sst5 receptors functionally coupled to Gi/o-protein, but not to the serum response element in AtT-20 mouse tumour corticotrophs. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 578-587.	1.4	31
183	Agonist properties of putative small-molecule somatostatin sst2 receptor-selective antagonists. European Journal of Pharmacology, 2003, 465, 211-218.	1.7	22
184	Title is missing!. Angewandte Chemie, 2003, 115, 800-802.	1.6	18
185	Design and Synthesis of γ-Dipeptide Derivatives with Submicromolar Affinities for Human Somatostatin Receptors. Angewandte Chemie - International Edition, 2003, 42, 776-778.	7.2	82
186	Pharmacological characterisation of native somatostatin receptors in AtT-20 mouse tumour corticotrophs. British Journal of Pharmacology, 2003, 139, 109-121.	2.7	39
187	Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nature Reviews Drug Discovery, 2003, 2, 999-1017.	21.5	504
188	Withdrawal from chronic amphetamine induces Depressive-Like behavioral effects in rodents. Biological Psychiatry, 2003, 54, 49-58.	0.7	180
189	Biological activity of somatostatin receptors in GC rat tumour somatotrophs: evidence with sst1a€"sst5 receptor-selective nonpeptidyl agonists. Neuropharmacology, 2003, 44, 672-685.	2.0	33
190	Genetic deletion of somatostatin receptor 1 alters somatostatinergic transmission in the mouse retina. Neuropharmacology, 2003, 45, 1080-1092.	2.0	44
191	Somatostatin sst2 receptor knock-out mice: localisation of sst1–5 receptor mRNA and binding in mouse brain by semi-quantitative RT–PCR, in situ hybridisation histochemistry and receptor autoradiography. Neuropharmacology, 2002, 42, 396-413.	2.0	55
192	Identification and characterization of a type five-like somatostatin receptor in goldfish pituitary. Molecular and Cellular Endocrinology, 2002, 189, 105-116.	1.6	30
193	Pharmacological characterisation of the goldfish somatostatin sst5 receptor. European Journal of Pharmacology, 2002, 436, 173-186.	1.7	22
194	Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacology Biochemistry and Behavior, 2002, 71, 533-554.	1.3	1,637
195	Study of the calcium dynamics of the human α4β2, α3β4 and α1β1γδ nicotinic acetylcholine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 235-245.	1.4	41
196	Somatostatin receptor subtypes 2 and 4 affect seizure susceptibility and hippocampal excitatory neurotransmission in mice. European Journal of Neuroscience, 2002, 16, 843-849.	1.2	77
197	Drug Design at Peptide Receptors. Journal of Molecular Neuroscience, 2002, 18, 15-28.	1.1	106
198	Peptide Folding Induces High and Selective Affinity of a Linear and Small Î ² -Peptide to the Human Somatostatin Receptor 4. Journal of Medicinal Chemistry, 2001, 44, 2460-2468.	2.9	167

#	Article	IF	CITATIONS
199	Linear, Peptidase-Resistantβ2/β3-Di- andα/β3-Tetrapeptide Derivatives with Nanomolar Affinities to a Human Somatostatin Receptor, Preliminary Communication. Helvetica Chimica Acta, 2001, 84, 3503-3510.	1.0	72
200	Lack of evidence for cross-competition between vasoactive intestinal peptide and somatostatin at their respective receptors. European Journal of Pharmacology, 2001, 426, 165-173.	1.7	3
201	Extended Radioligand Binding Profile of Iloperidone A Broad Spectrum Dopamine/Serotonin/Norepinephrine Receptor Antagonist for the Management of Psychotic Disorders. Neuropsychopharmacology, 2001, 25, 904-914.	2.8	84
202	Syntheses and biological activities of sandostatin analogs containing stereochemical changes in positions 6 or 8. Biopolymers, 2000, 53, 497-505.	1.2	6
203	The Cyclo-β-Tetrapeptide (β-HPhe-β-HThr-β-HLys-β-HTrp): Synthesis, NMR Structure in Methanol Solution, and Affinity for Human Somatostatin Receptors. Helvetica Chimica Acta, 2000, 83, 16-33.	1.0	79
204	Recovery of emotional behaviour in neural cell adhesion molecule (NCAM) null mutant mice through transgenic expression of NCAM180. European Journal of Neuroscience, 2000, 12, 3291-3306.	1.2	115
205	Design and synthesis of potent thiol-based inhibitors of endothelin converting enzyme-1. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2037-2039.	1.0	14
206	Distribution and characterisation of somatostatin receptor mRNA and binding sites in the brain and periphery. Journal of Physiology (Paris), 2000, 94, 265-281.	2.1	77
207	Cloning, expression, functional coupling and pharmacological characterization of the rat dopamine D 4 receptor. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 361, 555-564.	1.4	18
208	Involvement of the Sst1 Somatostatin Receptor Subtype in the Intrahypothalamic Neuronal Network Regulating Growth Hormone Secretion: Anin Vitroandin VivoAntisense Study1. Endocrinology, 2000, 141, 967-979.	1.4	47
209	Somatostatin receptors and the potential use of Sandostatin to interfere with vascular remodelling. European Journal of Endocrinology, 2000, 143 Suppl 1, S3-S7.	1.9	17
210	Potent and Selective Non-Peptidic Inhibitors of Endothelin-Converting Enzyme-1 with Sustained Duration of Action. Journal of Medicinal Chemistry, 2000, 43, 488-504.	2.9	104
211	Cloning, expression and pharmacological characterisation of the mouse somatostatin sst5 receptor. Neuropharmacology, 2000, 39, 1451-1462.	2.0	38
212	Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis. European Journal of Neuroscience, 1999, 11, 3767-3776.	1.2	129
213	Receptor density as a factor governing the efficacy of the dopamine D4 receptor ligands, L-745,870 and U-101958 at human recombinant D4.4 receptors expressed in CHO cells. British Journal of Pharmacology, 1999, 128, 613-620.	2.7	63
214	Molecular Cloning and Pharmacological Characterization of a Somatostatin Receptor Subtype in the Gymnotiform Fish Apteronotus albifrons. General and Comparative Endocrinology, 1999, 115, 333-345.	0.8	30
215	Pharmacological characterisation of 5-HT receptors positively coupled to adenylyl cyclase in the rat hippocampus. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 359, 454-459.	1.4	57
216	Characterisation of human recombinant somatostatin receptors. 1. Radioligand binding studies. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 488-499.	1.4	64

#	Article	IF	CITATIONS
217	Characterisation of human recombinant somatostatin receptors. 2. Modulation of GTPÎ ³ S binding. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 500-509.	1.4	32
218	Characterisation of human recombinant somatostatin receptors. 3. Modulation of adenylate cyclase activity. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 510-521.	1.4	43
219	Characterisation of human recombinant somatostatin receptors. 4. Modulation of phospholipase C activity. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 522-532.	1.4	39
220	Anxiety and increased 5-HT1A receptor response in NCAM null mutant mice. , 1999, 40, 343-355.		113
221	Structural and compositional determinants of cortistatin activity. , 1999, 56, 611-619.		42
222	Synthesis and Biological Evaluation of a Cyclo-tetrapeptide as a Somatostatin Analogue. Angewandte Chemie - International Edition, 1999, 38, 1223-1226.	7.2	180
223	Characterisation of the fish sst3 receptor, a member of the SRIF1 receptor family: atypical pharmacological features. Neuropharmacology, 1999, 38, 449-462.	2.0	30
224	The agonist activities of the putative antipsychotic agents, L-745,870 and U-101958 in HEK293 cells expressing the human dopamine D4.4 receptor. British Journal of Pharmacology, 1998, 124, 889-896.	2.7	40
225	The role of α 2 -adrenoceptor antagonism in the anti-cataleptic properties of the atypical neuroleptic agent, clozapine, in the rat. British Journal of Pharmacology, 1998, 124, 1550-1556.	2.7	42
226	Impact of the Human Genome Project on the Principles for Classification and Nomenclature of 5-HT Receptors. Annals of the New York Academy of Sciences, 1998, 861, 230-231.	1.8	1
227	High Affinity of SDZ HTF-919 and Related Molecules for Calf and Human Caudate 5-HT4 Receptors. Annals of the New York Academy of Sciences, 1998, 861, 267-268.	1.8	12
228	Design, Synthesis, and Biological Activities of Potent and Selective Somatostatin Analogues Incorporating Novel Peptoid Residues. Journal of Medicinal Chemistry, 1998, 41, 2679-2685.	2.9	31
229	[][Tyr3]octreotide labels human somatostatin sst2 and sst5 receptors. European Journal of Pharmacology, 1998, 348, 311-320.	1.7	45
230	[125I]Tyr10-cortistatin14 labels all five somatostatin receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 357, 483-489.	1.4	81
231	Somatostatin-and Neuropeptide Y-Mediated Neurotransmission in Kindling Epileptogenesis. Advances in Behavioral Biology, 1998, , 313-325.	0.2	2
232	The Elusive Nature of Cerebellar Somatostatin Receptors: Studies in Rat, Monkey and Human Cerebellum. Journal of Receptor and Signal Transduction Research, 1997, 17, 385-405.	1.3	19
233	Minireview: Nomenclature and Classification of Transmitter Receptors: an Integrated Approach. Journal of Receptor and Signal Transduction Research, 1997, 17, 551-568.	1.3	7
234	5-HT Receptor Classification and Nomenclature: Towards a Harmonization with the Human Genome. Neuropharmacology, 1997, 36, 419-428.	2.0	379

#	Article	IF	CITATIONS
235	Inhibition of cAMP Accumulation Via Recombinant Human Serotonin 5-HT 1A Receptors: Considerations on Receptor Effector Coupling across Systems. Neuropharmacology, 1997, 36, 429-437.	2.0	37
236	Identification and pharmacological characterization of somatostatin receptors in rat lung. British Journal of Pharmacology, 1997, 121, 963-971.	2.7	26
237	Pharmacological characterisation of human cerebral cortex somatostatin SRIF1 and SRIF2 receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 355, 161-167.	1.4	18
238	Autoradiographic analysis of somatostatin SRIF1 and SRIF2 receptors in the human brain and pituitary. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 355, 168-176.	1.4	15
239	Status of somatostatin receptor messenger RNAs and binding sites in rat brain during kindling epileptogenesis. Neuroscience, 1996, 75, 857-868.	1.1	18
240	Alignment of receptor nomenclature with the human genome: classification of 5-HT1B and 5-HT1D receptor subtypes. Trends in Pharmacological Sciences, 1996, 17, 103-105.	4.0	275
241	Somatostatin receptors in the developing rat brain. European Journal of Pharmacology, 1996, 297, 145-155.	1.7	36
242	Binding properties of somatostatin receptor subtypes. Metabolism: Clinical and Experimental, 1996, 45, 17-20.	1.5	119
243	SDZ PSD 958, a novel D1 receptor antagonist with potential limbic selectivity. Journal of Neural Transmission, 1996, 103, 261-276.	1.4	6
244	SDZ GLC 756, a novel octahydrobenzo[g]quinoline derivative exerts opposing effects on dopamine D1 and D2 receptors. Journal of Neural Transmission, 1996, 103, 17-30.	1.4	17
245	Presence of somatostatin sst2 receptors in the developing rat auditory system. Developmental Brain Research, 1996, 97, 269-278.	2.1	9
246	Somatostatin receptors in the Rhesus monkey brain: localization and pharmacological characterization. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 353, 648-660.	1.4	17
247	Expression of five somatostatin receptor mRNAs in the human brain and pituitary. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 411-419.	1.4	65
248	Localization and pharmacological characterization of somatostatin sst2 sites in the rat cerebellum. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 352, 607-13.	1.4	15
249	Pharmacological identity between somatostatin SS-2 binding sites and SSTR-1 receptors. European Journal of Pharmacology, 1995, 289, 151-161.	2.7	46
250	Characterization and distribution of somatostatin SS-1 and SRIF-1 binding sites in rat brain: identitity with SSTR-2 receptors. European Journal of Pharmacology, 1995, 289, 163-173.	2.7	48
251	The Serotonin 5-HT4 Receptor. 2. Structure-Activity Studies of the Indole Carbazimidamide Class of Agonists. Journal of Medicinal Chemistry, 1995, 38, 2331-2338.	2.9	87
252	Classification and nomenclature of 5-HT receptors: a comment on current issues. Behavioural Brain Research, 1995, 73, 263-268.	1.2	132

#	Article	IF	CITATIONS
253	Embryonic and postnatal mRNA distribution of five somatostatin receptor subtypes in the rat brain. Neuropharmacology, 1995, 34, 1673-1688.	2.0	88
254	Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera. Neuropharmacology, 1995, 34, 1635-1645.	2.0	218
255	(+)-cis-4,5,7a,8,9,10,11,11a-Octahydro-7H-10-methylindolo[1,7-bc][2,6]- naphthyridine: A 5-HT2C/2B Receptor Antagonist with Low 5-HT2A Receptor Affinity. Journal of Medicinal Chemistry, 1995, 38, 28-33.	2.9	55
256	The Serotonin 5-HT4 Receptor. 1. Design of a New Class of Agonists and Receptor Map of the Agonist Recognition Site. Journal of Medicinal Chemistry, 1995, 38, 2326-2330.	2.9	67
257	Functional effects of d-Phe-c[Cys-Tyr-d-Trp-Lys-Val-Cys]-Trp-NH2 and differential changes in somatostatin receptor messenger RNAs, binding sites and somatostatin release in kainic acid-treated rats. Neuroscience, 1995, 65, 1087-1097.	1.1	61
258	Co-expression of somatostatin SSTR-3 and SSTR-4 receptor messenger RNAs in the rat brain. Neuroscience, 1995, 64, 241-253.	1.1	57
259	Classification and nomenclature of somatostatin receptors. Trends in Pharmacological Sciences, 1995, 16, 86-88.	4.0	537
260	Therapeutic Possibilities with Serotonergic Drugs. , 1995, , 231-240.		1
261	Localization of somatostatin (SRIF) SSTR-1, SSTR-2 and SSTR-3 receptor mRNA in rat brain by in situ hybridization. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 145-60.	1.4	98
262	Molecular pharmacology of somatostatin receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 350, 441-53.	1.4	179
263	Molecular Pharmacology of Somatostatin-receptor Subtypes. Annals of the New York Academy of Sciences, 1994, 733, 138-146.	1.8	147
264	Aspartyl .alpha((1-Phenyl-3-(trifluoromethyl)- pyrazol-5-yl)oxy)methyl Ketones as Interleukin-1.beta. Converting Enzyme Inhibitors. Significance of the P1 and P3 Amido Nitrogens for Enzyme-Peptide Inhibitor Binding. Journal of Medicinal Chemistry, 1994, 37, 3863-3866.	2.9	56
265	Chromic mianserin or eltoprazine treatment in rats: effects on the elevated plus-maze test and on limbic 5-HT2C receptor levels. European Journal of Pharmacology, 1994, 262, 125-131.	1.7	27
266	Localization of 5-HT1B, 5-HT1Dα, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology, 1994, 33, 367-386.	2.0	324
267	A comparative autoradiographic study of 5-HT1D binding sites in human and guinea-pig brain using different radioligands. Molecular Brain Research, 1994, 21, 19-29.	2.5	47
268	Differential Expression of Five Somatostatin Receptor Subtypes, SSTR1-5, in the CNS and Peripheral Tissue. Digestion, 1994, 55, 46-53.	1.2	125
269	SDZ 216–525, a selective and potent 5-HT1A receptor antagonist. European Journal of Pharmacology, 1993, 244, 251-257.	2.7	54
270	Autoradiographic characterisation and localisation of 5-HT1D compared to 5-HT1B binding sites in rat brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 347, 569-582.	1.4	213

#	Article	IF	CITATIONS
271	Calcineurin inhibits desensitization of cloned rat 5-HT1C receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 348, 221-4.	1.4	16
272	Characterization of functional responses in A9 cells transfected with cloned rat 5-HT1C receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 347, 119-24.	1.4	12
273	Endothelin receptors in the human coronary artery, ventricle and atrium. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 348, 403-410.	1.4	39
274	Distribution and second messenger coupling of four somatostatin receptor subtypes expressed in brain. FEBS Letters, 1993, 331, 53-59.	1.3	109
275	The novel 5â€HT _{1A} receptor antagonist, SDZ 216–525, decreases 5â€HT release in rat hippocampus <i>in vivo</i> . British Journal of Pharmacology, 1993, 109, 699-702.	2.7	19
276	Effect of 5,7-dihydroxytryptamine lesion on mianserin-induced conditioned place aversion and on 5-hydroxytryptamine1C receptors in the rat brain. Neuroscience, 1993, 56, 687-693.	1.1	26
277	5-Hydroxytryptamine1 recognition sites in rat brain: Heterogeneity of non-5-hydroxytryptamine1a/1c binding sites revealed by quantitative receptor autoradiography. Neuroscience, 1993, 53, 465-473.	1.1	33
278	A proposed new nomenclature for 5-HT receptors. Trends in Pharmacological Sciences, 1993, 14, 233-236.	4.0	534
279	Partial agonists, full agonists, antagonists: dilemmas of definition. Trends in Pharmacological Sciences, 1993, 14, 270-275.	4.0	223
280	A Reappraisal of 5-HT Receptor Classification. Medical Science Symposia Series, 1993, , 41-47.	0.0	6
281	Cloning and functional characterization of the rat stomach fundus serotonin receptor EMBO Journal, 1992, 11, 3481-3487.	3.5	184
282	Direct visualization of serotonin1D receptors in the human brain using a new iodinated radioligand. Molecular Brain Research, 1992, 13, 175-178.	2.5	37
283	5-Hydroxytryptamine (5-HT) receptor superfamilies. Neurochemistry International, 1992, 21, Q15.	1.9	0
284	Agonist/antagonist interactions with cloned human 5-HT1A receptors: variations in intrinsic activity studied in transfected HeLa cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 345, 257-63.	1.4	88
285	5-HT1D binding sites in various species: similar pharmacological profile in dog, monkey, calf, guinea-pig and human brain membranes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 346, 243-8.	1.4	49
286	?5-HT1R? or 5-HT1D sites? Evidence for 5-HT 1D binding sites in rabbit brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 346, 249-54.	1.4	11
287	Evidence for the presence of 5-HT1B receptor messenger RNA in neurons of the rat trigeminal ganglia. European Journal of Pharmacology, 1992, 227, 357-359.	2.7	49
288	5â€HT ₁ â€like receptors mediate 5â€hydroxytryptamineâ€induced contraction of guineaâ€pig isolat iliac artery. British Journal of Pharmacology, 1991, 102, 386-390.		47

#	Article	lF	CITATIONS
289	Autoradiography of 5-HT receptors: A critical appraisal. Neurochemistry International, 1991, 18, 17-25.	1.9	20
290	Interaction between systemic circulation and brain injuries in newborns. Experimental Pathology, 1991, 42, 197-203.	0.5	8
291	Investigations of cerebral glucose utilization into the newborn brain: A [18F]-FDG positron emission tomography study using a high resolution multiwire proportional chamber detector device. Experimental Pathology, 1991, 42, 229-233.	0.5	3
292	Homogeneous 5-HT1D recognition sites in the human substantia nigra identified with a new iodinated radioligand. European Journal of Pharmacology, 1991, 202, 89-91.	1.7	26
293	Interaction of the α-adrenoceptor agonist oxymetazoline with serotonin 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors. European Journal of Pharmacology, 1991, 196, 213-216.	1.7	37
294	Receptor biochemistry and methodology volume 15: Serotonin receptor subtypes. Trends in Pharmacological Sciences, 1991, 12, 316.	4.0	1
295	Competitive antagonism by recognised 5-HT2 receptor antagonists at 5-HT1C receptors in pig choroid plexus. Naunyn-Schmiedeberg's Archives of Pharmacology, 1991, 344, 137-142.	1.4	13
296	5-HT Receptors: Subtypes and Second Messengers. Journal of Receptors and Signal Transduction, 1991, 11, 197-214.	1.2	191
297	Subtypes of α1-adrenoceptors in hippocampus of pigs, guinea-pigs, calves and humans: regional differences. European Journal of Pharmacology, 1990, 188, 9-16.	2.7	13
298	The serotonin 5-HT1D receptor: A progress review. Neurochemical Research, 1990, 15, 567-582.	1.6	91
299	Distribution of Serotonin Receptors. Annals of the New York Academy of Sciences, 1990, 600, 36-52.	1.8	152
300	Serotonin 5-HT1DReceptors. Annals of the New York Academy of Sciences, 1990, 600, 168-181.	1.8	51
301	Similar distribution of [125I]sarafotoxin-6b and [125I]endothelin-1, -2, -3 binding sites in the human kidney. European Journal of Pharmacology, 1990, 176, 233-236.	1.7	32
302	Receptor modification in the brains of spontaneously hypertensive and Wistarâ€Kyoto rats: regionally specific and selective increase in cerebellar beta 2â€adrenoceptors British Journal of Clinical Pharmacology, 1990, 30, 174S-177S.	1.1	5
303	Selective Agonists and Antagonists at 5-Hydroxytryptamine Receptor Subtypes. , 1990, , 265-276.		16
304	Competitive Interaction of Agonists and Antagonists with 5-HT3-Recognition Sites in Membranes of Neuroblastoma Cells Labelled with [3H] ICS 205–930. Journal of Receptors and Signal Transduction, 1989, 9, 65-79.	1.2	14
305	[3H]ICS 205-930 labels 5-HT3 recognition sites in membranes of cat and rabbit vagus nerve and superior cervical ganglion. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 340, 396-402.	1.4	48
306	5-Hydroxytryptamine 5-HT1B and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 340, 285-92.	1.4	83

#	Article	IF	CITATIONS
307	Interaction of arylpiperazines with 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors: do discriminatory 5-HT1B receptor ligands exist?. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 339, 675-83.	1.4	154
308	The pharmacological properties of the presynaptic serotonin autoreceptor in the pig brain cortex conform to the 5-HT1D receptor subtype. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 340, 45-51.	1.4	79
309	How selective is GR 43175? Interactions with functional 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 340, 135-8.	1.4	92
310	5-HT1C receptor-mediated stimulation of inositol phosphate production in pig choroid plexus. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 339, 252-8.	1.4	95
311	5-HT1D receptors in guinea-pig and pigeon brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 340, 479-85.	1.4	55
312	5.HT1 receptors in the vertebrate brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 340, 486-94.	1.4	81
313	GR 43175: A preferential 5-HT1D agent in monkey and human brains as shown by autoradiography. Synapse, 1989, 4, 168-170.	0.6	25
314	5-Hydroxytryptamine3 receptors in the human brain: Autoradiographic visualization using [3H]ICS 205-930. Neuroscience, 1989, 31, 393-400.	1.1	163
315	Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends in Pharmacological Sciences, 1989, 10, 130-132.	4.0	331
316	Interaction of psychotropic drugs with central 5-HT3 recognition sites: fact or artifact?. European Journal of Pharmacology, 1989, 171, 137-139.	1.7	50
317	ls the sumatripan (GR 43175)-induced endothelium-dependent relaxation of pig coronary arteries mediated by 5-HT1D receptors?. European Journal of Pharmacology, 1989, 166, 117-119.	1.7	22
318	[1251]Endothelin-l Binding Sites. Journal of Cardiovascular Pharmacology, 1989, 13, S162-165.	0.8	89
319	A Comparison of the Interactions of Dihydroergotamine, Ergotamine and GR 43175 with 5-HT1 Receptor Subtypes. Cephalalgia, 1989, 9, 340-341.	1.8	14
320	Molecular pharmacology of 5-HT1D recognition sites: Radioligand binding studies in human, pig and calf brain membranes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 337, 595-601.	1.4	165
321	The 5-hydroxytryptamine 5-HT1D receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 337, 602-8.	1.4	113
322	Characterisation of 5-HT3 recognition sites in membranes of NG 108-15 neuroblastoma-glioma cells with [3H]ICS 205-930. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 337, 493-9.	1.4	46
323	5-HT1D receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra. European Journal of Pharmacology, 1988, 147, 145-147.	1.7	76
324	[125I]SCH 23982, a â€~selective' D-1 receptor antagonist, labels with high affinity 5-HT1C sites in pig choroid plexus. European Journal of Pharmacology, 1988, 150, 181-184.	1.7	41

#	Article	IF	CITATIONS
325	Localisation by autoradiography of neuronal 5-HT3 receptors in the mouse CNS. European Journal of Pharmacology, 1988, 151, 351-352.	1.7	159
326	Molecular pharmacology and biology of 5-HT1C receptors. Trends in Pharmacological Sciences, 1988, 9, 89-94.	4.0	225
327	Functional Correlates of Serotonin 5-HT1Recognition Sites. Journal of Receptors and Signal Transduction, 1988, 8, 59-81.	1.2	555
328	Centrally acting hypotensive agents with affinity for 5â€HT _{1A} binding sites inhibit forskolinâ€stimulated adenylate cyclase activity in calf hippocampus. British Journal of Pharmacology, 1988, 95, 975-985.	2.7	144
329	Identification of a 5-HT1 recognition site in human brain membranes different from 5-HT1A, 5-HT1B and 5-HT1C sites. Neuroscience Letters, 1988, 85, 357-362.	1.0	73
330	Visualization of a novel serotonin recognition site (5-HT1D) in the human brain by autoradiography. Neuroscience Letters, 1988, 88, 11-16.	1.0	106
331	Central 5-HT1A Receptors and the Mechanism of the Central Hypotensive Effect of (+)8-OH-DPAT, DP-5-CT, R28935, and Urapidil. Journal of Cardiovascular Pharmacology, 1988, 11, 432-437.	0.8	60
332	[3H]Ketanserin Labels Serotonin 5-HT2 and α1-Adrenergic Receptors in Human Brain Cortex. Journal of Cardiovascular Pharmacology, 1987, 10, S48-S50.	0.8	9
333	Identification of serotonin 5-HT3 recognition sites by radioligand binding in NG108-15 neuroblastoma-glioma cells. European Journal of Pharmacology, 1987, 143, 291-292.	1.7	93
334	α1-adrenoceptors in the mammalian brain: similar pharmacology but different distribution in rodents and primates. Brain Research, 1987, 419, 65-75.	1.1	130
335	[3H]Ketanserin labels 5-HT2 receptors and ?1-adrenoceptors in human and pig brain membranes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 335, 226-30.	1.4	40
336	Inhibition of 5-carboxamidotryptamine-induced relaxation of guinea-pig ileum correlates with [1251]LSD binding. European Journal of Pharmacology, 1986, 129, 139-145.	1.7	29
337	[125I]LSD labels 5-HT1C recognition sites in pig choroid plexus membranes. Comparison with [3H]mesulergine and [3H]5-HT binding. Neuroscience Letters, 1986, 69, 269-274.	1.0	32
338	Implications of stereoselectivity in radioligand binding studies. Trends in Pharmacological Sciences, 1986, 7, 227-230.	4.0	12
339	Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Research, 1986, 376, 85-96.	1.1	391
340	Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Research, 1986, 376, 97-107.	1.1	285
341	Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg's Archives of Pharmacology, 1986, 332, 1-7.	1.4	648
342	5-HT1A-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedeberg's Archives of Pharmacology, 1986, 333, 335-341.	1.4	195

#	Article	IF	CITATIONS
343	Serotonin increases the production of inositol phosphates and mobilises calcium via the 5-HT2 receptor in A7r5 smooth muscle cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1986, 333, 98-103.	1.4	69
344	Characterization of the 5-HTIB recognition site in rat brain: Binding studies with (â~')[1251]lodocyanopindolol. European Journal of Pharmacology, 1985, 118, 1-12.	1.7	276
345	Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: Radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (â^')[125I]iodocyanopindolol, [3H]mesulergine and [3H]Ketanserin. European Journal of Pharmacology, 1985, 118, 13-23.	1.7	559
346	Identification of 5HT2-Receptors on Longitudinal Muscle of the Guinea Pig lleum. Journal of Receptors and Signal Transduction, 1984, 4, 113-126.	1.2	52
347	Characterization of IBE 2254 Binding to Alpha - Adrenergic Receptors on Intact DDT Smooth Muscle Cells: Comparison with Membrane1Binding and Correlation with Phosphoinositides Breakdown. Journal of Receptors and Signal Transduction, 1984, 4, 51-67.	1.2	9
348	Mesulergine, a selective serotonin-2 ligand in the rat cortex, does not label these receptors in porcine and human cortex: Evidence for species differences in brain serotonin-2 receptors. European Journal of Pharmacology, 1984, 106, 531-538.	1.7	132
349	The binding of serotonergic ligands to the porcine choroid plexus: Characterization of a new type of serotonin recognition site. European Journal of Pharmacology, 1984, 106, 539-546.	1.7	560
350	Binding of125I-Cyanopindolol to Beta-1-Adreno-Ceptors in a High and Low Affinity State. Journal of Receptors and Signal Transduction, 1983, 3, 45-59.	1.2	7
351	[125Iodo]BE 2254, a New Radioligand for α1-Adrenoceptors. Journal of Cardiovascular Pharmacology, 1982, 4, S25-S29.	0.8	15
352	Non-specific uptake of the radioligand 125I-IHYP by intact human lymphocytes: Reversal of the uptake process. Molecular and Cellular Endocrinology, 1982, 25, 267-276.	1.6	16
353	Binding characteristics of (+)-, ()- and (-)-[125lodo] cyanopindolol to guinea-pig left ventricle membranes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1982, 318, 319-329.	1.4	69
354	[125I]BE 2254, a new high affinity radioligand for α1-adrenoceptors. European Journal of Pharmacology, 1981, 73, 221-224.	1.7	127
355	The β-adrenergic receptor in human lymphocytes: Subclassification by the use of a new radio-ligand, (±)â~125iodocyanopindolol. Life Sciences, 1981, 29, 2189-2198.	2.0	201
356	(ïį¼2)[125Iodo]cyanopindolol, a new ligand for ?-adrenoceptors: Identification and quantitation of subclasses of ?-adrenoceptors in guinea pig. Naunyn-Schmiedeberg's Archives of Pharmacology, 1981, 317, 277-285.	1.4	379
357	Effects of some GABA-mimetic drugs on the antinociceptive activity of morphine and ?-endorphin in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1981, 316, 231-234.	1.4	39
259	Assessing allosteric ligand-receptor interactions 0 247-269		0

Assessing allosteric ligand-receptor interactions. , 0, , 247-269.