Ann-Marie Pendrill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3068413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Teacher interventions and student strategies for circular motion problems: a matrix representation. Physics Education, 2022, 57, 035003.	0.3	1
2	From skating rink to physics assignment—viewing a photo from a mechanics perspective. Physics Education, 2022, 57, 055003.	0.3	1
3	Reply to Comment on â€~Forces on hockey players: vectors, work, energy and angular momentum'. European Journal of Physics, 2021, 42, 028009.	0.3	1
4	The cooling of a swede—part of an EUSO CSI challenge. Physics Education, 2021, 56, 025018.	0.3	0
5	Balls rolling down a playground slide: What factors influence their motion?. Physics Education, 2021, 56, 015005.	0.3	7
6	Educational Visits to Amusement Parks. , 2021, , 1-26.		0
7	Newton's Laws: Motion and Forces. , 2021, , 1-18.		Ο
8	Acceleration and Newton's Second Law. , 2021, , 1-34.		0
9	Rotation. , 2021, , 1-18.		Ο
10	Physics on a Playground. , 2021, , 1-30.		0
11	Circular Motion on a Vertical Plane. , 2021, , 1-30.		Ο
12	Roller Coasters in Physics Education. , 2021, , 1-30.		0
13	Circular Motion in a Horizontal Plane. , 2021, , 1-22.		Ο
14	Pendulum Rides. , 2021, , 1-26.		0
15	Technology and Safety. , 2021, , 1-20.		0
16	Illusions. , 2021, , 1-18.		0
17	Jerk within the Context of Science and Engineering—A Systematic Review. Vibration, 2020, 3, 371-409.	0.9	24
18	Forces in circular motion: discerning student strategies. Physics Education, 2020, 55, 045006.	0.3	6

#	Article	IF	CITATIONS
19	Smartphones and Newton's first law in escalators and roller coasters. Physics Education, 2020, 55, 035016.	0.3	16
20	Velocity, acceleration, jerk, snap and vibration: forces in our bodies during a roller coaster ride. Physics Education, 2020, 55, 065012.	0.3	21
21	Programming and its affordances for physics education: A social semiotic and variation theory approach to learning physics. Physical Review Physics Education Research, 2020, 16, .	1.4	15
22	Gamified physics challenges for teachers and the public. Physics Education, 2020, 55, 045014.	0.3	12
23	Teaching with Google Classroom. Educare - Vetenskapliga Skrifter, 2020, , 158-191.	0.1	Ο
24	Virtual reality, video screen shots and sensor data for a large drop tower ride. Physics Education, 2020, 55, 055017.	0.3	5
25	Is the Archimedes principle a law of nature? Discussions in an â€~extended teacher room'. Physics Education, 2020, 55, 065025.	0.3	4
26	Training teachers to use playgrounds in physics teaching. Journal of Physics: Conference Series, 2019, 1286, 012069.	0.3	3
27	Contemporary science as context for teaching nature of science: teachers' development of popular science articles as a teaching resource. Physics Education, 2019, 54, 055008.	0.3	5
28	Students making sense of motion in a vertical roller coaster loop. Physics Education, 2019, 54, 065017.	0.3	14
29	Forces on hockey players: vectors, work, energy and angular momentum. European Journal of Physics, 2019, 40, 065005.	0.3	5
30	Understanding acceleration: An interplay between different mathematics and physics representations. Journal of Physics: Conference Series, 2019, 1286, 012070.	0.3	1
31	Up and down, light and heavy, fast and slow—but where?. Physics Education, 2019, 54, 025017.	0.3	10
32	Rutherford visits middle school: a case study on how teachers direct attention to the nature of science through a storytelling approach. Physics Education, 2019, 54, 045002.	0.3	6
33	Mathematics, measurement and experience of rotations around three axes. European Journal of Physics, 2019, 40, 015003.	0.3	6
34	En Delfistudie om lÄ m res uppfattning av elevengagemang i NO-undervisningen A Delphi study of teachers views on engagement in the science classroom. Nordic Studies in Science Education, 2019, 15, 128-144.	0.3	3
35	Gymnasiets laborationsundervisning i fysik – Vad påverkar läares val av laborationer?. Lumat, 2019, 7,	0.2	1
36	Pendulum rides, rotations and the Coriolis effect. Physics Education, 2018, 53, 045017.	0.3	13

#	Article	IF	CITATIONS
37	Gymnasiets laboratorionsundervisning i fysik – mellan tradition och Ã ¤ drade styrdokument. Lumat, 2018, 6, .	0.2	1
38	Force, acceleration and velocity during trampoline jumps—a challenging assignment. Physics Education, 2017, 52, 065021.	0.3	7
39	Free fall and the equivalence principle revisited. Physics Education, 2017, 52, 065002.	0.3	5
40	Roller coaster loop shapes revisited. Physics Education, 2016, 51, 030106.	0.3	0
41	Rotating swings—a theme with variations. Physics Education, 2016, 51, 015014.	0.3	15
42	Beyond velocity and acceleration: jerk, snap and higher derivatives. European Journal of Physics, 2016, 37, 065008.	0.3	125
43	Aerodynamics in the amusement park: interpreting sensor data for acceleration and rotation. Physics Education, 2016, 51, 055015.	0.3	8
44	Infrared cameras in science education. Infrared Physics and Technology, 2016, 75, 150-152.	1.3	30
45	Liquid in accelerated motion. Physics Education, 2015, 50, 648-650.	0.3	11
46	Free fall and harmonic oscillations: analyzing trampoline jumps. Physics Education, 2015, 50, 64-70.	0.3	15
47	The International Year of Light and Light-based Technologies. Physics Education, 2015, 50, 291-294.	0.3	0
48	Motion on an inclined plane and the nature of science. Physics Education, 2014, 49, 180-186.	0.3	12
49	The equivalence principle comes to school—falling objects and other middle school investigations. Physics Education, 2014, 49, 425-430.	0.3	19
50	Att utgå från frågor och situationer i förskolans vardag: Vilket naturvetenskapligt innehåll kan det leda till? Starting from questions and everyday situations in preschool: What kind of science content could that lead to?. Nordic Studies in Science Education, 2014, 10, 77-89.	0.3	5
51	Student investigations of the forces in a roller coaster loop. European Journal of Physics, 2013, 34, 1379-1389.	0.3	10
52	Stopping a roller coaster train. Physics Education, 2012, 47, 728-735.	0.3	17
53	Teachers' Perceived Requirements for Collaborating with the Surrounding World. Nordic Studies in Science Education, 2012, 8, 227-243.	0.3	4
54	Acceleration and rotation in a pendulum ride, measured using an iPhone 4. Physics Education, 2011, 46, 676-681.	0.3	29

#	Article	IF	CITATIONS
55	Achterbahn fahren im Physikunterricht. Physikdidaktik. Physik in Unserer Zeit, 2009, 40, 90-95.	0.0	3
56	Acceleration in one, two, and three dimensions in launched roller coasters. Physics Education, 2008, 43, 483-491.	0.3	13
57	How do we know that the Earth spins around its axis?. Physics Education, 2008, 43, 158-164.	0.3	10
58	Atoms through the looking glass – a relativistic challenge. Canadian Journal of Physics, 2008, 86, 99-109.	0.4	3
59	The Manhattan project—a part of physics history. Physics Education, 2006, 41, 493-501.	0.3	2
60	A rollercoaster viewed through motion tracker data. Physics Education, 2005, 40, 522-526.	0.3	12
61	Rollercoaster loop shapes. Physics Education, 2005, 40, 517-521.	0.3	26
62	Swings and slides. Physics Education, 2005, 40, 527-533.	0.3	23
63	Careers in the Nordic nations. Physics World, 2004, 17, 42-43.	0.0	0
64	Correlation and Relativistic Effects on LandégJFactors of Atomic Ions. Hyperfine Interactions, 2003, 146/147, 127-131.	0.2	6
65	Hyperfine structure of heavy hydrogen-like ions. Nuclear Instruments & Methods in Physics Research B, 2003, 205, 62-65.	0.6	14
66	QUASI-DEGENERACY IN BOUND-STATE QED. FINE STRUCTURE OF HELIUMLIKE IONS. , 2003, , .		0
67	Classical physics experiments in the amusement park. Physics Education, 2002, 37, 507-511.	0.3	24
68	Hyperfine structure in the 4d states of Rb-like Sr. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 917-924.	0.6	20
69	Treatment of atomic quasi-degeneracy in bound-state QED. Application to the 1s2p states of He-like ions. AIP Conference Proceedings, 2001, , .	0.3	0
70	QED procedure applied to the quasidegenerate fine-structure levels of He-like ions. Physical Review A, 2001, 64, .	1.0	38
71	Hyperfine structure of hydrogenlike thallium isotopes. Physical Review A, 2001, 64, .	1.0	102
72	Charge radii in francium isotopes. Molecular Physics, 2000, 98, 1201-1204.	0.8	10

#	Article	IF	CITATIONS
73	Isotopes through the looking glass. , 2000, 127, 41-48.		7
74	Thallium hyperfine anomaly. , 2000, 127, 347-352.		15
75	Nuclear magnetization distribution radii determined by hyperfine transitions in the1slevel of H-like ions185Re74+and187Re74+. Physical Review A, 1998, 57, 879-887.	1.0	119
76	Need for remeasurements of nuclear magnetic dipole moments. Physical Review A, 1998, 58, 3611-3618.	1.0	63
77	Four Decades of Hyperfine Anomalies. Advances in Quantum Chemistry, 1998, 30, 343-360.	0.4	16
78	(2p2)1Sstate of beryllium. Physical Review A, 1996, 53, 3151-3156.	1.0	15
79	Doppler free ?dark resonances? for hyperfine measurements and isotope shifts in Ca+ isotopes in a Paul trap. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1995, 34, 227-232.	1.0	24
80	Magnetic Moment Distributions in Tl Nuclei. Physical Review Letters, 1995, 74, 2184-2187.	2.9	42
81	Isotope shift in the electron affinity of chlorine. Physical Review A, 1995, 51, 231-238.	1.0	174
82	Convergence of relativistic perturbation theory for the 1s2pstates in low-Zheliumlike systems. Physical Review A, 1995, 51, 3630-3635.	1.0	13
83	Isotope shifts and hyperfine structure in the 369.4-nm 6s-6p1/2resonance line of singly ionized ytterbium. Physical Review A, 1994, 49, 3351-3365.	1.0	70
84	Radiative lifetimes of the 6p 2 P 1 2/0 and 6p 2 P 3 2/0 levels in Yb II. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 28, 283-284.	1.0	25
85	Many-body perturbation theory in atomic structure calculations. Physica Scripta, 1993, T46, 102-109.	1.2	5
86	Parity non-conserving effects in atomic systems. Physica Scripta, 1993, T46, 182-183.	1.2	2
87	Isotope shift and nuclear charge radii of barium isotopes. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, L551-L559.	0.6	21
88	lsotope shifts and nuclear-charge radii in singly ionizedCa40–48. Physical Review A, 1992, 45, 4675-4681.	1.0	62
89	Corrections to the beryllium ground-state energy. Physical Review A, 1992, 45, 1493-1496.	1.0	86

#	Article	IF	CITATIONS
91	Atomic Spectroscopy as a Probe of Parity Non-Conserving Effects in the Nucleus. NATO ASI Series Series B: Physics, 1992, , 87-92.	0.2	0
92	Coupled-cluster calculations for atoms. AIP Conference Proceedings, 1991, , .	0.3	0
93	Calculations of the parity non-conserving 6s ? 7s transition in caesium. Theoretica Chimica Acta, 1991, 80, 257-288.	0.9	23
94	Calculations of isotope shifts in caesium and thallium using many-body perturbation theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 1193-1207.	0.6	36
95	Limit on a P - and T -Violating Electron-Nucleon Interaction. Europhysics Letters, 1991, 15, 155-160.	0.7	17
96	Beryllium atom reinvestigated: A comparison between theory and experiment. Physical Review A, 1991, 43, 3355-3364.	1.0	59
97	Parity non-conservation and electric dipole moments in caesium and thallium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, 3417-3436.	0.6	46
98	Matrix elements in the coupled-cluster approach - with application to low-lying states in Li. Physica Scripta, 1990, 41, 329-347.	1.2	47
99	Reanalysis of the isotope shift and nuclear charge radii in radioactive potassium isotopes. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, 1749-1761.	0.6	39
100	Further analysis of the complete Breit interaction. Physical Review A, 1989, 39, 3794-3802.	1.0	50
101	Self-consistent treatment of the Breit interaction, with application to the electric dipole moment in thallium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22, 2447-2464.	0.6	60
102	The NO-pair equation—Fundamental problems, numerical solutions and applications. AIP Conference Proceedings, 1989, , .	0.3	0
103	Numerical Determination of Non-Relativistic and Relativistic Pair Correlation. , 1989, , 131-160.		3
104	Parity Non-Conservation and Pair Correlation in Heavy Atomic Systems. Physica Scripta, 1988, T22, 300-302.	1.2	0
105	Comparisons between different calculations of PNC in Cs and TI. Physica Scripta, 1987, 36, 122-128.	1.2	5
106	Calculations of atomic electric dipole moments. Physica Scripta, 1987, 36, 444-452.	1.2	47
107	PNC Equations of Motion method. Physica Scripta, 1987, 36, 481-484.	1.2	5
108	A relativistic pair equation projected onto positive energy states. Journal of Physics B: Atomic and Molecular Physics, 1987, 20, 1679-1696.	1.6	28

#	Article	IF	CITATIONS
109	Comment on relativistic wave equations and negative-energy states. Physical Review A, 1986, 33, 4426-4429.	1.0	60
110	Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure. Journal of Physics B: Atomic and Molecular Physics, 1986, 19, 2799-2815.	1.6	364
111	Electron correlation effects in the 4f14shell. International Journal of Quantum Chemistry, 1985, 27, 665-675.	1.0	10
112	Parity non-conservation in caesium. Journal De Physique, 1985, 46, 1949-1959.	1.8	47
113	The Hyperfine Structure in the Alkaline-Earth Ions. Physica Scripta, 1985, 31, 169-172.	1.2	44
114	Specific mass shift of the (4s4p)1,3P states in calcium studied with many-body perturbation theory. Physical Review A, 1985, 31, 58-66.	1.0	20
115	Calculation of aP- andT-Nonconserving Weak Interaction in Xe and Hg with Many-Body Perturbation Theory. Physical Review Letters, 1985, 54, 1153-1155.	2.9	77
116	Hyperfine structure of the4s,4p, and3dstates inCa+evaluated by many-body perturbation theory. Physical Review A, 1984, 30, 712-721.	1.0	41
117	Experimental and theoretical investigation of the isotope shift of the 4D level in atomic potassium. Zeitschrift Für Physik A, 1984, 318, 285-290.	1.4	10
118	Isotope shifts and energies of the 1s 2p states in helium. Zeitschrift Für Physik A, 1984, 316, 265-273.	1.4	15
119	Calculation of the isotope shift in Na. Zeitschrift Für Physik A, 1983, 309, 277-284.	1.4	27
120	Relativistic Calculations of Core-Polarisation Effects on the Hyperfine Structure in the Alkalis. Physica Scripta, 1983, 27, 291-296.	1.2	37
121	The Specific Mass Shift of the Ionisation Energy in Ne Calculated by Many-Body Perturbation Theory. Physica Scripta, 1983, 28, 469-471.	1.2	9
122	Hyperfine structure of the7pstate in Fr. Physical Review A, 1983, 27, 3332-3333.	1.0	20
123	Analysis of the atomic fine structure, using a nonrelativistic many-body and a relativistic central-field approach. Physical Review A, 1982, 26, 3249-3267.	1.0	22
124	Numerical Many-Body Perturbation Calculations on Be-like Systems Using a Multi-Configurational Model Space. Physica Scripta, 1980, 21, 351-356.	1.2	144
125	Dirac-Hartree-Fock Calculations for Bismuth Including the Parity-Violating Operator in the Potential. Physica Scripta, 1980, 21, 293-294.	1.2	5
126	Comments on the hyperfine structure of the4D2state of rubidium. Physical Review A, 1977, 15, 2123-2125.	1.0	31