Fabien Salaün

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3068328/publications.pdf

Version: 2024-02-01

218592 233338 2,301 71 26 45 h-index citations g-index papers 73 73 73 2468 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Shelf-life and quality of chicken nuggets fortified with encapsulated fish oil and garlic essential oil during refrigerated storage. Journal of Food Science and Technology, 2021, 58, 121-128.	1.4	27
2	Far-Infrared Emission Properties and Thermogravimetric Analysis of Ceramic-Embedded Polyurethane Films. Polymers, 2021, 13, 686.	2.0	8
3	Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the \hat{l}^2 Phase and Crystallinity Enhancement. Polymers, 2021, 13, 174.	2.0	149
4	A Comprehensive Review of Microencapsulated Phase Change Materials Synthesis for Low-Temperature Energy Storage Applications. Applied Sciences (Switzerland), 2021, 11, 11900.	1.3	11
5	A green method to fabricate porous polypropylene fibers: development toward textile products and mechanical evaluation. Textile Reseach Journal, 2020, 90, 547-560.	1.1	7
6	Porous fibers surface decorated with nanofillers: From meltâ€spun PP/PVA blend fibers with silica nanoparticles. Journal of Applied Polymer Science, 2020, 137, 48470.	1.3	4
7	Development of Novel Polyamide 11 Multifilaments and Fabric Structures Based on Industrial Lignin and Zinc Phosphinate as Flame Retardants. Molecules, 2020, 25, 4963.	1.7	9
8	Influence of a Coaxial Electrospraying System on the n-Hexadecane/Polycaprolactone Phase Change Microcapsules Properties. Materials, 2020, 13, 2205.	1.3	6
9	A New Method for Measuring Water Vapour Transfers Through Fabrics. Fibers and Polymers, 2020, 21, 646-656.	1.1	4
10	Preparation of n-Alkane/Polycaprolactone Phase-Change Microcapsules via Single Nozzle Electro-Spraying: Characterization on Their Formation, Structures and Properties. Applied Sciences (Switzerland), 2020, 10, 561.	1.3	10
11	The Effects of the Solvent Choice of the Continuous Phase on the Poly(Urea-Urethane) Microcapsules Properties. Journal of Chemical Engineering Research Updates, 2020, 7, 24-33.	0.1	0
12	Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan. LWT - Food Science and Technology, 2019, 116, 108494.	2.5	54
13	Textiles for health: a review of textile fabrics treated with chitosan microcapsules. Environmental Chemistry Letters, 2019, 17, 1787-1800.	8.3	53
14	Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics, 2019, 11, 403.	2.0	32
15	Influence of Solvent Selection in the Electrospraying Process of Polycaprolactone. Applied Sciences (Switzerland), 2019, 9, 402.	1.3	45
16	Preparation of Electrosprayed Poly(caprolactone) Microparticles Based on Green Solvents and Related Investigations on the Effects of Solution Properties as Well as Operating Parameters. Coatings, 2019, 9, 84.	1.2	15
17	Manufacture Techniques of Chitosan-Based Microcapsules to Enhance Functional Properties of Textiles. Sustainable Agriculture Reviews, 2019, , 303-336.	0.6	3
18	Polypropylene/Poly(vinyl alcohol) Blends Compatibilized with Kaolinite Janus Hybrid Particles and Their Transformation into Fibers. Industrial & Engineering Chemistry Research, 2019, 58, 10931-10940.	1.8	8

#	Article	IF	Citations
19	Valorization of Industrial Lignin as Biobased Carbon Source in Fire Retardant System for Polyamide 11 Blends. Polymers, 2019, 11, 180.	2.0	18
20	Influence of Ammonium Polyphosphate/Lignin Ratio on Thermal and Fire Behavior of Biobased Thermoplastic: The Case of Polyamide 11. Materials, 2019, 12, 1146.	1.3	24
21	Study and modeling of fabric hydric behavior to improve wearer comfort. Textile Reseach Journal, 2019, 89, 3632-3652.	1.1	1
22	Fire retardant action of zinc phosphinate and polyamide 11 blend containing lignin as a carbon source. Polymer Degradation and Stability, 2018, 153, 63-74.	2.7	29
23	Microstructure Evolution of Immiscible PP-PVA Blends Tuned by Polymer Ratio and Silica Nanoparticles. Polymers, 2018, 10, 1031.	2.0	10
24	Overcoming the Limits of Flash Nanoprecipitation: Effective Loading of Hydrophilic Drug into Polymeric Nanoparticles with Controlled Structure. Polymers, 2018, 10, 1092.	2.0	41
25	Chitosan–Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation. International Journal of Molecular Sciences, 2018, 19, 2521.	1.8	41
26	Influence of process parameters on microcapsule formation from chitosanâ€"Type B gelatin complex coacervates. Carbohydrate Polymers, 2018, 198, 281-293.	5.1	34
27	Influence of silica nanoparticles combined with zinc phosphinate on flame retardant properties of PET. Polymers for Advanced Technologies, 2017, 28, 1919-1928.	1.6	15
28	Surface behavior and bulk properties of aqueous chitosan and type-B gelatin solutions for effective emulsion formulation. Carbohydrate Polymers, 2017, 173, 202-214.	5.1	15
29	Thermal Stability and Fire Retardant Properties of Polyamide 11 Microcomposites Containing Different Lignins. Industrial & Containing Chemistry Research, 2017, 56, 13704-13714.	1.8	39
30	Water vapor permeability of thermosensitive polyurethane films obtained from isophorone diisocyanate and polyester or polyether polyol. Journal of Materials Science, 2017, 52, 1014-1027.	1.7	6
31	Intumescent formulations based on lignin and phosphinates for the bio-based textiles. IOP Conference Series: Materials Science and Engineering, 2017, 254, 052004.	0.3	3
32	Chitosan-carboxymethylcellulose based microcapsules formulation for controlled release of active ingredients from cosmeto textile. IOP Conference Series: Materials Science and Engineering, 2017, 254, 072020.	0.3	6
33	Influence of textile properties on thermal comfort. IOP Conference Series: Materials Science and Engineering, 2017, 254, 182007.	0.3	10
34	Microencapsulation technology for smart textile coatings. , 2016, , 179-220.		33
35	Application of Flame-Retardant Double-Layered Shell Microcapsules to Nonwoven Polyester. Polymers, 2016, 8, 267.	2.0	7
36	PLA with Intumescent System Containing Lignin and Ammonium Polyphosphate for Flame Retardant Textile. Polymers, 2016, 8, 331.	2.0	112

#	Article	IF	CITATIONS
37	Development of a Halogen Free Flame Retardant Masterbatch for Polypropylene Fibers. Polymers, 2015, 7, 220-234.	2.0	27
38	Sol–gel microencapsulation of oil phase with Pickering and nonionic surfactant based emulsions. Powder Technology, 2015, 284, 237-244.	2.1	9
39	Flame Retardant/Resistant Based Nanocomposites in Textile. Engineering Materials, 2015, , 131-165.	0.3	5
40	The Influence of 1-Butanol and Trisodium Citrate Ion on Morphology and Chemical Properties of Chitosan-Based Microcapsules during Rigidification by Alkali Treatment. Marine Drugs, 2014, 12, 5801-5816.	2.2	21
41	Development of Multilayer Microcapsules by a Phase Coacervation Method Based on Ionic Interactions for Textile Applications. Pharmaceutics, 2014, 6, 281-297.	2.0	21
42	Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, 2014, 99, 608-616.	5.1	187
43	Synthesis and characterization of chitosan droplet particles by ionic gelation and phase coacervation. Polymer Bulletin, 2014, 71, 1001-1013.	1.7	17
44	A review of heat transfer phenomena and the impact of moisture on firefighters' clothing and protection. Ergonomics, 2014, 57, 1078-1089.	1.1	24
45	Microencapsulation of bisphenol-A bis (diphenyl phosphate) and influence of particle loading on thermal and fire properties of polypropylene and polyethylene terephtalate. Polymer Degradation and Stability, 2013, 98, 2663-2671.	2.7	19
46	Nanoencapsulation of curcumin in polyurethane and polyurea shells by an emulsion diffusion method. Chemical Engineering Journal, 2013, 221, 133-145.	6.6	73
47	Thermoâ€physical properties of polypropylene fibers containing a microencapsulated flame retardant. Polymers for Advanced Technologies, 2013, 24, 236-248.	1.6	14
48	A novel approach to synthesize and to fix microparticles on cotton fabric. Chemical Engineering Journal, 2012, 213, 78-87.	6.6	14
49	Preparation of microcapsules with multi-layers structure stabilized by chitosan and sodium dodecyl sulfate. Carbohydrate Polymers, 2012, 90, 967-975.	5.1	26
50	Influence of the washings on the thermal properties of polyurea-urethane microcapsules containing xylitol to provide a cooling effect. Materials Letters, 2011, 65, 381-384.	1.3	10
51	Development and characterisation of flame-retardant fibres from isotactic polypropylene melt-compounded with melamine-formaldehyde microcapsules. Polymer Degradation and Stability, 2011, 96, 131-143.	2.7	35
52	Evaluation of thermal and moisture management properties on knitted fabrics and comparison with a physiological model in warm conditions. Applied Ergonomics, 2011, 42, 792-800.	1.7	101
53	Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane–urea) microparticles characteristics. Journal of Membrane Science, 2011, 370, 23-33.	4.1	93
54	Functionalized poly (vinyl alcohol) polymer as chemodosimeter material for the colorimetric sensing of cyanide in pure water. Sensors and Actuators B: Chemical, 2011, 157, 26-33.	4.0	51

#	Article	IF	Citations
55	Influence of chemical shell structure on the thermal properties of microcapsules containing a flame retardant agent. Polymer Degradation and Stability, 2010, 95, 315-319.	2.7	26
56	Polypropylene fabrics padded with microencapsulated ammonium phosphate: Effect of the shell structure on the thermal stability and fire performance. Polymer Degradation and Stability, 2010, 95, 1716-1720.	2.7	38
57	Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochimica Acta, 2010, 506, 82-93.	1.2	118
58	Influence of the solvent on the microencapsulation of an hydrated salt. Carbohydrate Polymers, 2010, 79, 964-974.	5.1	49
59	Curcumin-Loaded Nanocapsules: Formulation and Influence of the Nanoencapsulation Processes Variables on the Physico-Chemical Characteristics of the Particles. International Journal of Chemical Reactor Engineering, 2009, 7, .	0.6	8
60	Investigation of Water Absorption and Diffusion in Microparticles Containing Xylitol to Provide a Cooling Effect by Thermal Analysis. International Journal of Thermophysics, 2009, 30, 1242-1256.	1.0	10
61	Preparation of double layered shell microparticles containing an acid dye by a melt dispersion–coacervation technique. Powder Technology, 2009, 192, 375-383.	2.1	12
62	Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chemical Engineering Journal, 2009, 155, 457-465.	6.6	116
63	Effects of microparticles on isotactic polypropylene: Thermomechanical and thermal properties. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2566-2576.	2.4	15
64	Preparation of multinuclear microparticles using a polymerization in emulsion process. Journal of Applied Polymer Science, 2008, 107, 2444-2452.	1.3	19
65	Development of a precipitation method intended for the entrapment of hydrated salt. Carbohydrate Polymers, 2008, 73, 231-240.	5.1	24
66	Polymer nanoparticles to decrease thermal conductivity of phase change materials. Thermochimica Acta, 2008, 477, 25-31.	1.2	30
67	Influence of core materials on thermal properties of melamine–formaldehyde microcapsules. European Polymer Journal, 2008, 44, 849-860.	2.6	77
68	Chitosan-Based Sustainable Textile Technology: Process, Mechanism, Innovation, and Safety. , 0, , .		12
69	Preparation of bio-functional textiles by surface functionalization of cellulose fabrics with caffeine loaded nanoparticles IOP Conference Series: Materials Science and Engineering, 0, 460, 012044.	0.3	9
70	Sol-Gel Microencapsulation Based on Pickering Emulsion. , 0, , .		3
71	Phase Change Materials for Textile Application. , 0, , .		7