Sima Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3068209/publications.pdf

Version: 2024-02-01

		759055	752573
50	494	12	20
papers	citations	h-index	g-index
50	50	50	272
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Stability Analysis of Layered Soil Slope Using Truncated Pile with Numerical Solution. Transportation Infrastructure Geotechnology, 2022, 9, 272-301.	1.9	2
2	Application of HSOS algorithm on pseudo-dynamic bearing capacity of shallow strip footing along with numerical analysis. International Journal of Geotechnical Engineering, 2021, 15, 1298-1311.	1.1	5
3	Experimental and numerical studies of three-layered unreinforced and geosynthetic-reinforced soil slopes. Innovative Infrastructure Solutions, $2021, 6, 1$.	1.1	2
4	Modified Pseudo-dynamic Bearing Capacity of Strip Footing Resting on Layered Soil. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2021, 45, 2733-2763.	1.0	3
5	Experimental and Numerical Study of Soil Slopes at Varying Water Content Under Dynamic Loading Condition. International Journal of Civil Engineering, 2020, 18, 215-229.	0.9	8
6	Modified Pseudo-dynamic Bearing Capacity of Shallow Strip Footing Considering Fully Log-Spiral Passive Zone with Global Center. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2020, 44, 683-693.	1.0	6
7	Swedish Circle Method for Pseudo-dynamic Analysis of Slope Considering Circular Failure Mechanism. Geotechnical and Geological Engineering, 2020, 38, 2573-2589.	0.8	14
8	Seismic analysis of slope considering log-spiral failure surface with numerical validation. International Journal of Geo-Engineering, 2020, 11 , 1 .	0.9	2
9	Seismic Bearing Capacity of Strip Footing Resting on Reinforced Layered Soil Using Chaotic Particle Swarm Optimization Technique. Geotechnical and Geological Engineering, 2020, 38, 5489-5509.	0.8	4
10	Probabilistic assessment and study of earthquake recurrence models for entire Northeast region of India. Natural Hazards, 2020, 102, 15-45.	1.6	1
11	New pseudo-dynamic analysis of two-layered cohesive-friction soil slope and its numerical validation. Frontiers of Structural and Civil Engineering, 2020, 14, 1492-1508.	1.2	2
12	Modified pseudo-dynamic bearing capacity analysis of shallow strip footing considering total seismic wave. International Journal of Geotechnical Engineering, 2020, 14, 101-109.	1.1	9
13	Reconnaissance report on geotechnical effects and structural damage caused by the 3 January 2017 Tripura earthquake, India. Natural Hazards, 2019, 98, 425-450.	1.6	16
14	Influence of Length to Diameter Ratio on Strength Parameters of Offshore Monopiles. Lecture Notes in Civil Engineering, 2019, , 201-208.	0.3	2
15	Pseudo-Static Bearing Capacity Analysis of Shallow Strip Footing over Two-Layered Soil Considering Punching Shear Failure. Geotechnical and Geological Engineering, 2019, 37, 3749-3770.	0.8	4
16	Seismic stability of slope using modified pseudo-dynamic method. International Journal of Geotechnical Engineering, 2019, 13, 548-559.	1.1	6
17	Liquefaction potential of Agartala City in Northeast India using a GIS platform. Bulletin of Engineering Geology and the Environment, 2019, 78, 2919-2931.	1.6	20
18	Seismic Stability of Slope Considering Rayleigh Wave. Journal of Earthquake Engineering, 2019, 23, 141-159.	1.4	1

#	Article	IF	CITATIONS
19	Pseudostatic Analysis of Shallow Strip Footing Resting on Two-Layered Soil. International Journal of Geomechanics, 2018, 18, .	1.3	13
20	Analysis of slope using modified pseudo-dynamic method. International Journal of Geotechnical Engineering, 2018, 12, 337-346.	1.1	14
21	Pseudodynamic Bearing Capacity Analysis of Shallow Strip Footing Using the Advanced Optimization Technique "Hybrid Symbiosis Organisms Search Algorithm―with Numerical Validation. Advances in Civil Engineering, 2018, 2018, 1-18.	0.4	6
22	Seismic bearing capacity of shallow strip footing using horizontal slice method. International Journal of Geotechnical Engineering, 2017, 11, 38-50.	1.1	13
23	A Hybrid Symbiosis Organisms Search algorithm and its application to real world problems. Memetic Computing, 2017, 9, 261-280.	2.7	34
24	Seismic Bearing Capacity of Shallow Strip Footing with Coulomb Failure Mechanism using Limit Equilibrium Method. Geotechnical and Geological Engineering, 2017, 35, 2647-2661.	0.8	22
25	Improved backtracking search algorithm for pseudo dynamic active earth pressure on retaining wall supporting c-D:backfill. Applied Soft Computing Journal, 2017, 52, 885-897.	4.1	62
26	Pseudo-dynamic analysis of seawall considering non-breaking wave force. International Journal of Geotechnical Engineering, 2017, 11, 393-404.	1.1	0
27	Response of Slope Made Up of Soil and Other Waste Materials under Sinusoidal Motion. Advances in Materials Science and Engineering, 2017, 2017, 1-16.	1.0	3
28	Analysis of slope considering circular rupture surface. International Journal of Geotechnical Engineering, 2016, 10, 288-296.	1.1	13
29	Non-linear failure surface analysis of seismic active earth pressure on retaining wall considering Rayleigh waves. International Journal of Geotechnical Engineering, 2016, 10, 476-486.	1.1	1
30	Pseudo-static Analysis of Reinforced Earth Retaining Wall considering Non-linear Failure Surface. Geotechnical and Geological Engineering, 2016, 34, 981-990.	0.8	8
31	Analysis of Soil Nail Excavation Considering Rayleigh Wave with Log-Spiral Failure Surface. International Journal of Geosynthetics and Ground Engineering, 2016, 2, 1.	0.9	3
32	Pseudo-Dynamic Bearing Capacity of Shallow Strip Footing Resting on c- \hat{l}_1^{\dagger} Soil Considering Composite Failure Surface. International Journal of Geotechnical Earthquake Engineering, 2015, 6, 12-34.	0.3	13
33	Pseudo-dynamic analysis for bearing capacity of foundation resting on <i>c</i> â€"Φ soil. International Journal of Geotechnical Engineering, 2015, 9, 379-387.	1.1	25
34	Parameters Optimization of Geotechnical Problem Using Different Optimization Algorithm. Geotechnical and Geological Engineering, 2015, 33, 1235-1253.	0.8	21
35	Active Earth Pressure on Retaining Wall Supporting c-Φ Backfill Considering Rayleigh Wave. Indian Geotechnical Journal, 2015, 45, 121-134.	0.7	2
36	Pseudo-Static Analysis of Slope Considering Circular Rupture Surface. International Journal of Geotechnical Earthquake Engineering, 2014, 5, 37-43.	0.3	4

3

#	Article	IF	CITATIONS
37	Pseudo-static passive response of retaining wall supporting $\hat{l}_{\parallel}^{\dagger}$ backfill. International Journal of Geotechnical Engineering, 2014, 8, 94-101.	1.1	0
38	Pseudo-dynamic passive resistance of battered-faced retaining wall supportingc-Φ backfill considering Rayleigh wave. International Journal of Geotechnical Engineering, 2014, 8, 396-405.	1.1	2
39	Nonlinear Failure Surface and Pseudodynamic Passive Resistance of a Battered-Faced Retaining Wall Supporting c-Φ Backfill. International Journal of Geomechanics, 2014, 14, .	1.3	7
40	Pseudo-Dynamic Active Earth Pressure on Battered Face Retaining Wall Supporting $c-\hat{l}$ Backfill Considering Curvilinear Rupture Surface. International Journal of Geotechnical Earthquake Engineering, 2014, 5, 39-57.	0.3	1
41	Sliding Stability of Retaining Wall Supporting c-Φ Backfill under Pseudo-Statically Seismic Active Load. International Journal of Geotechnical Earthquake Engineering, 2013, 4, 1-16.	0.3	0
42	Seismic Active Earth Pressure on the Back of Battered Retaining Wall Supporting Inclined Backfill. International Journal of Geomechanics, 2012, 12, 54-63.	1.3	30
43	Formulation of Seismic Passive Resistance of Retaining Wall Backfilled with c-F Soil. International Journal of Geotechnical Earthquake Engineering, 2012, 3, 15-24.	0.3	2
44	Pseudo-dynamic evaluation of passive response on the back of a retaining wall supporting <i>c-</i> ê backfill. Geomechanics and Geoengineering, 2012, 7, 115-121.	0.9	16
45	Force Polygon and Seismic Active Earth Pressure on the Back of a Retaining Wall Supporting c-F Backfill. International Journal of Geotechnical Earthquake Engineering, 2011, 2, 20-28.	0.3	0
46	Pseudo-Dynamic Evolution of Seismic Passive Earth Force and Pressure Behind Retaining Wall. International Journal of Geotechnical Earthquake Engineering, 2011, 2, 1-15.	0.3	0
47	Pseudo-Dynamic Active Response of Non-Vertical Retaining Wall Supporting c-Î Backfill. Geotechnical and Geological Engineering, 2010, 28, 633-641.	0.8	32
48	Pseudo-dynamic active force and pressure behind battered retaining wall supporting inclined backfill. Soil Dynamics and Earthquake Engineering, 2010, 30, 1226-1232.	1.9	40
49	Total seismic analysis of slope considering logarithmic spiral failure surface. Geomechanics and Geoengineering, 0, , 1-21.	0.9	0
50	Modified pseudo-dynamic analysis of slope considering logarithmic spiral failure surface with numerical solution. Australian Journal of Civil Engineering, 0, , 1-25.	0.6	0