Mattheos A G Koffas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3068130/publications.pdf

Version: 2024-02-01

186 papers 11,171 citations

²⁶⁶³⁰
56
h-index

98 g-index

197 all docs

197 docs citations

times ranked

197

7532 citing authors

#	Article	IF	CITATIONS
1	Semi-rational evolution of pyruvate carboxylase from Rhizopus oryzae for elevated fumaric acid synthesis in Saccharomyces cerevisiae. Biochemical Engineering Journal, 2022, 177, 108238.	3.6	3
2	Methods for the Development of Recombinant Microorganisms for the Production of Natural Products. Methods in Molecular Biology, 2022, 2396, 1-17.	0.9	2
3	Bioelectrosynthesis systems. Current Opinion in Biotechnology, 2022, 74, 211-219.	6.6	7
4	Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved \hat{l}^2 -carotene production in Saccharomyces cerevisiae. Microbial Cell Factories, 2022, 21, 3.	4.0	24
5	Harnessing electrical-to-biochemical conversion for microbial synthesis. Current Opinion in Biotechnology, 2022, 75, 102687.	6.6	9
6	<i>De novo</i> Biosynthesis of Salvianolic Acid B in <i>Saccharomyces cerevisiae</i> Engineered with the Rosmarinic Acid Biosynthetic Pathway. Journal of Agricultural and Food Chemistry, 2022, 70, 2290-2302.	5.2	7
7	Editorial: Engineering the Microbial Platform for the Production of Biologics and Small-Molecule Medicines, Volume II. Frontiers in Microbiology, 2022, 13, 827181.	3. 5	O
8	Biosynthesis of eriodictyol from tyrosine by Corynebacterium glutamicum. Microbial Cell Factories, 2022, 21, 86.	4.0	14
9	Utilization of microbialÂcocultures for converting mixed substrates to valuable bioproducts. Current Opinion in Microbiology, 2022, 68, 102157.	5.1	7
10	Biobased biorefineries: Sustainable bioprocesses and bioproducts from biomass/bioresources special issue. Renewable and Sustainable Energy Reviews, 2022, 167, 112683.	16.4	12
11	Chondroitin Sulfate and Its Derivatives: A Review of Microbial and Other Production Methods. Fermentation, 2022, 8, 323.	3.0	8
12	Wall teichoic acids: physiology and applications. FEMS Microbiology Reviews, 2021, 45, .	8.6	19
13	Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Natural Product Reports, 2021, 38, 1282-1329.	10.3	56
14	Impact of ethylene glycol on DHEA dihydroxylation in Colletotrichum lini: Increasing the expression of cytochrome P450 and 6-phosphogluconate dehydrogenase and enhancing the generation of NADPH. Biochemical Engineering Journal, 2021, 166, 107860.	3.6	1
15	The three NADH dehydrogenases of Pseudomonas aeruginosa: Their roles in energy metabolism and links to virulence. PLoS ONE, 2021, 16, e0244142.	2.5	8
16	Complete biosynthesis of a sulfated chondroitin in Escherichia coli. Nature Communications, 2021, 12, 1389.	12.8	35
17	Metabolic engineering of E. coli for pyocyanin production. Metabolic Engineering, 2021, 64, 15-25.	7.0	26
18	Modular optimization in metabolic engineering. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 1-16.	5.2	4

#	Article	IF	CITATIONS
19	Bioproduction of biomacromolecules for antiviral applications. Current Opinion in Biotechnology, 2021, 69, 263-272.	6.6	2
20	Improved glucose and xylose co-utilization by overexpression of xylose isomerase and/or xylulokinase genes in oleaginous fungus Mucor circinelloides. Applied Microbiology and Biotechnology, 2021, 105, 5565-5575.	3.6	11
21	Multi-level rebalancing of the naringenin pathway using riboswitch-guided high-throughput screening. Metabolic Engineering, 2021, 67, 417-427.	7.0	15
22	Abiotic-biotic hybrid for CO2 biomethanation: From electrochemical to photochemical process. Science of the Total Environment, 2021, 791, 148288.	8.0	13
23	Scalable, effective, and rapid decontamination of SARS-CoV-2 contaminated N95 respirators using germicidal ultraviolet C (UVC) irradiation device. Scientific Reports, 2021, 11, 19970.	3.3	8
24	Recent advances in modular co-culture engineering for synthesis of natural products. Current Opinion in Biotechnology, 2020, 62, 65-71.	6.6	99
25	Whole-cell biocatalytic, enzymatic and green chemistry methods for the production of resveratrol and its derivatives. Biotechnology Advances, 2020, 39, 107461.	11.7	55
26	Microbial production of bioactive chemicals for human health. Current Opinion in Food Science, 2020, 32, 9-16.	8.0	15
27	Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of \hat{I}^2 -carotene in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2020, 13, 168.	6.2	42
28	Mitigation of host cell mutations and regime shift during microbial fermentation: a perspective from flux memory. Current Opinion in Biotechnology, 2020, 66, 227-235.	6.6	6
29	Metabolic engineering for production of functional polysaccharides. Current Opinion in Biotechnology, 2020, 66, 44-51.	6.6	28
30	Glycerol transporter 1 (Gt1) and zinc-regulated transporter 1 (Zrt1) function in different modes for zinc homeostasis in Komagataella phaffii (Pichia pastoris). Biotechnology Letters, 2020, 42, 2413-2423.	2.2	2
31	Novel Prokaryotic CRISPR-Cas12a-Based Tool for Programmable Transcriptional Activation and Repression. ACS Synthetic Biology, 2020, 9, 3353-3363.	3.8	19
32	Increased Accumulation of Medium-Chain Fatty Acids by Dynamic Degradation of Long-Chain Fatty Acids in Mucor circinelloides. Genes, 2020, 11, 890.	2.4	15
33	Fabrication of homotypic neural ribbons as a multiplex platform optimized for spinal cord delivery. Scientific Reports, 2020, 10, 12939.	3.3	12
34	Improved Butanol Production Using FASII Pathway in <i>E. coli</i> . ACS Synthetic Biology, 2020, 9, 2390-2398.	3.8	12
35	High-yield production of l-serine through a novel identified exporter combined with synthetic pathway in Corynebacterium glutamicum. Microbial Cell Factories, 2020, 19, 115.	4.0	26
36	Rational identification and characterisation of peptide ligands for targeting polysialic acid. Scientific Reports, 2020, 10, 7697.	3.3	1

#	Article	IF	CITATIONS
37	Application of combinatorial optimization strategies in synthetic biology. Nature Communications, 2020, 11, 2446.	12.8	80
38	Genetically-encoded biosensors for analyzing and controlling cellular process in yeast. Current Opinion in Biotechnology, 2020, 64, 175-182.	6.6	23
39	Expression of enzymes for 3′-phosphoadenosine-5′-phosphosulfate (PAPS) biosynthesis and their preparation for PAPS synthesis and regeneration. Applied Microbiology and Biotechnology, 2020, 104, 7067-7078.	3.6	12
40	Microbial Coculture for Flavonoid Synthesis. Trends in Biotechnology, 2020, 38, 686-688.	9.3	43
41	Making brilliant colors by microorganisms. Current Opinion in Biotechnology, 2020, 61, 135-141.	6.6	15
42	The importance and future of biochemical engineering. Biotechnology and Bioengineering, 2020, 117, 2305-2318.	3.3	13
43	Biotechnological Production of Flavonoids: An Update on Plant Metabolic Engineering, Microbial Host Selection, and Genetically Encoded Biosensors. Biotechnology Journal, 2020, 15, e1900432.	3.5	35
44	De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering. Applied Microbiology and Biotechnology, 2020, 104, 4849-4861.	3.6	33
45	Improved soluble expression and use of recombinant human renalase. PLoS ONE, 2020, 15, e0242109.	2.5	7
46	N-glycolyl chondroitin synthesis using metabolically engineered E. coli. AMB Express, 2020, 10, 144.	3.0	6
47	Reducing <i>Staphylococcus aureus</i> resistance to lysostaphin using CRISPRâ€dCas9. Biotechnology and Bioengineering, 2019, 116, 3149-3159.	3.3	26
48	Design and Characterization of Biosensors for the Screening of Modular Assembled Naringenin Biosynthetic Library in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2019, 8, 2121-2130.	3.8	46
49	Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis. ACS Synthetic Biology, 2019, 8, 2514-2523.	3.8	125
50	Pathway enzyme engineering for flavonoid production in recombinant microbes. Metabolic Engineering Communications, 2019, 9, e00104.	3.6	40
51	Editorial: Engineering the Microbial Platform for the Production of Biologics and Small-Molecule Medicines. Frontiers in Microbiology, 2019, 10, 2307.	3. 5	5
52	Heavy Heparin: A Stable Isotopeâ€Enriched, Chemoenzymaticallyâ€Synthesized, Polyâ€Component Drug. Angewandte Chemie, 2019, 131, 6023-6027.	2.0	2
53	Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-l³-glutamic acid. Metabolic Engineering, 2019, 56, 39-49.	7.0	45
54	Metabolic engineering of Bacillus megaterium for heparosan biosynthesis using Pasteurella multocida heparosan synthase, PmHS2. Microbial Cell Factories, 2019, 18, 132.	4.0	25

#	Article	IF	CITATIONS
55	Cell-free production of isobutanol: A completely immobilized system. Bioresource Technology, 2019, 294, 122104.	9.6	10
56	Fineâ€tuning the (2 <i>S</i>)â€naringenin synthetic pathway using an iterative highâ€throughput balancing strategy. Biotechnology and Bioengineering, 2019, 116, 1392-1404.	3.3	76
57	Advances in the development and application of microbial consortia for metabolic engineering. Metabolic Engineering Communications, 2019, 9, e00095.	3.6	103
58	Increased 3′â€Phosphoadenosineâ€5′â€phosphosulfate Levels in Engineered <i>Escherichia coli</i> Facilitate the In Vitro Synthesis of Chondroitin Sulfate A. Biotechnology Journal, 2019, 14, e1800436.	sate 3.5	27
59	Specificity and action pattern of heparanase Bp, a \hat{l}^2 -glucuronidase from Burkholderia pseudomallei. Glycobiology, 2019, 29, 572-581.	2.5	10
60	Production of pyranoanthocyanins using Escherichia coli co-cultures. Metabolic Engineering, 2019, 55, 290-298.	7.0	44
61	Microbial engineering biotechnologies. Biotechnology Advances, 2019, 37, 107399.	11.7	6
62	<i>In Vitro</i> Naringenin Biosynthesis from <i>p</i> Coumaric Acid Using Recombinant Enzymes. Journal of Agricultural and Food Chemistry, 2019, 67, 13430-13436.	5.2	33
63	Antibiotic Korormicin A Kills Bacteria by Producing Reactive Oxygen Species. Journal of Bacteriology, 2019, 201, .	2.2	16
64	Heavy Heparin: A Stable Isotopeâ€Enriched, Chemoenzymaticallyâ€Synthesized, Polyâ€Component Drug. Angewandte Chemie - International Edition, 2019, 58, 5962-5966.	13.8	35
65	Focus Issue Editorial: Synthetic Biology. Plant Physiology, 2019, 179, 772-774.	4.8	4
66	Rewiring the Central Metabolic Pathway for Highâ€Yield <scp>l</scp> â€Serine Production in <i>Corynebacterium glutamicum</i> by Using Glucose. Biotechnology Journal, 2019, 14, e1800497.	3.5	24
67	Back Cover Image, Volume 116, Number 12, December 2019. Biotechnology and Bioengineering, 2019, 116, ii.	3.3	0
68	Chemical Synthesis of Silk-Mimetic Polymers. Materials, 2019, 12, 4086.	2.9	13
69	Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli. Metabolic Engineering, 2019, 52, 215-223.	7.0	24
70	Metabolic engineering of cyanobacteria for photoautotrophic production of heparosan, a pharmaceutical precursor of heparin. Algal Research, 2019, 37, 57-63.	4.6	41
71	Microbial Production of Flavonoids. , 2019, , 93-128.		1
72	Microbial Production of l-Serine from Renewable Feedstocks. Trends in Biotechnology, 2018, 36, 700-712.	9.3	40

#	Article	IF	CITATIONS
73	Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metabolic Engineering, 2018, 47, 254-262.	7.0	105
74	The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Current Opinion in Biotechnology, 2018, 53, 85-92.	6.6	51
75	Improved strategies for electrochemical 1,4-NAD(P)H2 regeneration: A new era of bioreactors for industrial biocatalysis. Biotechnology Advances, 2018, 36, 120-131.	11.7	39
76	Engineering <i>Escherichia coli</i> Coâ€Cultures for Production of Curcuminoids From Glucose. Biotechnology Journal, 2018, 13, e1700576.	3.5	52
77	Anthocyanin Production in Engineered Microorganisms. , 2018, , 81-97.		6
78	Metabolic engineering of capsular polysaccharides. Emerging Topics in Life Sciences, 2018, 2, 337-348.	2.6	13
79	Production of Deuterated Cyanidin 3-O-Glucoside from RecombinantEscherichia coli. ACS Omega, 2018, 3, 11643-11648.	3.5	14
80	Metabolic bioengineering: glycans and glycoconjugates. Emerging Topics in Life Sciences, 2018, 2, 333-335.	2.6	3
81	Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Microbial Cell Factories, 2018, 17, 143.	4.0	61
82	Editorial overview: Chemical biotechnology. Current Opinion in Biotechnology, 2018, 53, v-vii.	6.6	0
83	Engineering <i>Bacillus megaterium</i> Strains To Secrete Cellulases for Synergistic Cellulose Degradation in a Microbial Community. ACS Synthetic Biology, 2018, 7, 2413-2422.	3.8	21
84	Electrochemical Bioreactor Technology for Biocatalysis and Microbial Electrosynthesis. Advances in Applied Microbiology, 2018, 105, 51-86.	2.4	9
85	Molecular parts and genetic circuits for metabolic engineering of microorganisms. FEMS Microbiology Letters, 2018, 365, .	1.8	22
86	Engineering a Glucosamine-6-phosphate Responsive <i>glmS</i> Ribozyme Switch Enables Dynamic Control of Metabolic Flux in <i>Bacillus subtilis</i> for Overproduction of <i>N</i> Acetylglucosamine. ACS Synthetic Biology, 2018, 7, 2423-2435.	3.8	49
87	CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microbial Cell Factories, 2017, 16, 10.	4.0	121
88	Engineered heparins as new anticoagulant drugs. Bioengineering and Translational Medicine, 2017, 2, 17-30.	7.1	32
89	Complete Biosynthesis of Anthocyanins Using <i>E. coli</i> Polycultures. MBio, 2017, 8, .	4.1	157
90	Naringeninâ€responsive riboswitchâ€based fluorescent biosensor module for <i>Escherichia coli</i> coâ€cultures. Biotechnology and Bioengineering, 2017, 114, 2235-2244.	3.3	83

#	Article	IF	Citations
91	Identification of the binding sites for ubiquinone and inhibitors in the Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae by photoaffinity labeling. Journal of Biological Chemistry, 2017, 292, 7727-7742.	3.4	19
92	Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions. Metabolic Engineering, 2017, 39, 247-256.	7.0	33
93	Effect of Genomic Integration Location on Heterologous Protein Expression and Metabolic Engineering in <i>E.Âcoli</i> <ir> <ir> <ir> <ir> <ir> <ir> <ir> <i< td=""><td>3.8</td><td>93</td></i<></ir></ir></ir></ir></ir></ir></ir>	3.8	93
94	Expression and secretion of glycosylated heparin biosynthetic enzymes using Komagataella pastoris. Applied Microbiology and Biotechnology, 2017, 101, 2843-2851.	3.6	11
95	Introduction to the Special Issue: "Arnold Demain – Industrial microbiologist extraodinaire― Synthetic and Systems Biotechnology, 2017, 2, 1.	3.7	2
96	Development of Artificial Riboswitches for Monitoring of Naringenin <i>In Vivo</i> . ACS Synthetic Biology, 2017, 6, 2077-2085.	3.8	78
97	Construction and functional characterization of truncated versions of recombinant keratanase II from Bacillus circulans. Glycoconjugate Journal, 2017, 34, 643-649.	2.7	10
98	Expression of chondroitin-4-O-sulfotransferase in Escherichia coli and Pichia pastoris. Applied Microbiology and Biotechnology, 2017, 101, 6919-6928.	3.6	23
99	Cloning and Expression of Recombinant Chondroitinase ACII and Its Comparison to the <i>Arthrobacter aurescens</i> Enzyme. Biotechnology Journal, 2017, 12, 1700239.	3.5	25
100	Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives. Synthetic and Systems Biotechnology, 2017, 2, 259-266.	3.7	60
101	Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metabolic Engineering, 2017, 39, 49-59.	7.0	137
102	Comparative thermal inactivation analysis of <i>Aspergillus oryzae</i> and <i>Thiellavia terrestris</i> cutinase: Role of glycosylation. Biotechnology and Bioengineering, 2017, 114, 63-73.	3.3	33
103	Recent Advances in the Recombinant Biosynthesis of Polyphenols. Frontiers in Microbiology, 2017, 8, 2259.	3.5	69
104	Tailor-made exopolysaccharides—CRISPR-Cas9 mediated genome editing in Paenibacillus polymyxa. Synthetic Biology, 2017, 2, ysx007.	2.2	45
105	Draft Genome Sequence of Bacillus subtilis Ia1a, a New Strain for Poly- \hat{l}^3 -Glutamic Acid and Exopolysaccharide Production. Genome Announcements, 2016, 4, .	0.8	0
106	Pathway and Strain Design for Biofuels Production. , 2016, , 97-116.		2
107	Optimization of naringenin and <i>p</i> -coumaric acid hydroxylation using the native <i>E. coli</i> hydroxylase complex, HpaBC. Biotechnology Progress, 2016, 32, 21-25.	2.6	56
108	Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in <i>Escherichia coli</i> . Nucleic Acids Research, 2016, 44, 4472-4485.	14.5	74

#	Article	IF	CITATIONS
109	Synthesis and biological evaluation of 5,7-dihydroxyflavanone derivatives as antimicrobial agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3089-3092.	2.2	22
110	Optimizing Metabolic Pathways for the Improved Production of Natural Products. Methods in Enzymology, 2016, 575, 179-193.	1.0	41
111	Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. Trends in Biotechnology, 2016, 34, 652-664.	9.3	463
112	Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metabolic Engineering, 2016, 35, 55-63.	7.0	210
113	Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnology Advances, 2016, 34, 634-662.	11.7	214
114	Microbial production of value-added nutraceuticals. Current Opinion in Biotechnology, 2016, 37, 97-104.	6.6	134
115	ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways. Scientific Reports, 2015, 5, 11301.	3.3	126
116	Antimicrobial mechanism of resveratrolâ€ <i>trans</i> àêdihydrodimer produced from peroxidaseâ€catalyzed oxidation of resveratrol. Biotechnology and Bioengineering, 2015, 112, 2417-2428.	3.3	45
117	Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase. Biochimie, 2015, 115, 136-143.	2.6	25
118	When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts. Frontiers in Plant Science, 2015, 6, 7.	3.6	92
119	Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering. Applied Microbiology and Biotechnology, 2015, 99, 7465-7479.	3.6	54
120	Development of a Recombinant Escherichia coli Strain for Overproduction of the Plant Pigment Anthocyanin. Applied and Environmental Microbiology, 2015, 81, 6276-6284.	3.1	78
121	CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in <i>E. coli</i> . ACS Synthetic Biology, 2015, 4, 987-1000.	3.8	144
122	Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Current Opinion in Biotechnology, 2015, 36, 205-214.	6.6	85
123	Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metabolic Engineering, 2015, 28, 43-53.	7.0	116
124	Production of chondroitin in metabolically engineered E. coli. Metabolic Engineering, 2015, 27, 92-100.	7.0	117
125	Enzymatic formation of a resorcylic acid by creating a structureâ€guided singleâ€point mutation in stilbene synthase. Protein Science, 2015, 24, 167-173.	7.6	25
126	Metabolic pathway balancing and its role in the production of biofuels and chemicals. Current Opinion in Biotechnology, 2015, 33, 52-59.	6.6	176

#	Article	IF	Citations
127	Biochemical strategies for enhancing the in vivo production of natural products with pharmaceutical potential. Current Opinion in Biotechnology, 2014, 25, 86-94.	6.6	43
128	Editorial overview: Food biotechnology. Current Opinion in Biotechnology, 2014, 26, v-vii.	6.6	1
129	Design and Kinetic Analysis of a Hybrid Promoter–Regulator System for Malonyl-CoA Sensing in <i>Escherichia coli</i> . ACS Chemical Biology, 2014, 9, 451-458.	3.4	123
130	Using Recombinant Microorganisms for the Synthesis and Modification of Flavonoids and Stilbenes. , 2014, , 483-488.		1
131	Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiology Reviews, 2014, 38, 660-697.	8.6	191
132	Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11299-11304.	7.1	423
133	A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder. Bioprocess and Biosystems Engineering, 2014, 37, 2425-2436.	3.4	42
134	Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: Proof of concept for genetic interventions predicted by OptForce computational framework. Chemical Engineering Science, 2013, 103, 109-114.	3.8	54
135	Expression of Low Endotoxin 3-O-Sulfotransferase in Bacillus subtilis and Bacillus megaterium. Applied Biochemistry and Biotechnology, 2013, 171, 954-962.	2.9	13
136	Pathway and protein engineering approaches to produce novel and commodity small molecules. Current Opinion in Biotechnology, 2013, 24, 1137-1143.	6.6	59
137	Engineering plant metabolism into microbes: from systems biology to synthetic biology. Current Opinion in Biotechnology, 2013, 24, 291-299.	6.6	100
138	Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nature Communications, 2013, 4, 1409.	12.8	405
139	Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues. Plant Science, 2013, 210, 10-24.	3.6	64
140	Isoflavonoid Production by Genetically Engineered Microorganisms. , 2013, , 1647-1681.		7
141	Draft Genome Sequence of Escherichia coli Strain ATCC 23502 (Serovar O5:K4:H4). Genome Announcements, 2013, 1, e0004613.	0.8	8
142	Draft Genome Sequence of Escherichia coli Strain ATCC 23506 (Serovar O10:K5:H4). Genome Announcements, 2013, 1, e0004913.	0.8	11
143	Draft Genome Sequence of Escherichia coli Strain Nissle 1917 (Serovar O6:K5:H1). Genome Announcements, 2013, 1, e0004713.	0.8	31
144	Draft Genome Sequence of Pseudoalteromonas luteoviolacea Strain B (ATCC 29581). Genome Announcements, 2013, 1, e0004813.	0.8	10

#	Article	IF	CITATIONS
145	Assembly of Multi-gene Pathways and Combinatorial Pathway Libraries Through ePathBrick Vectors. Methods in Molecular Biology, 2013, 1073, 107-129.	0.9	14
146	Production of 7- <i>O</i> -Methyl Aromadendrin, a Medicinally Valuable Flavonoid, in Escherichia coli. Applied and Environmental Microbiology, 2012, 78, 684-694.	3.1	85
147	ePathBrick: A Synthetic Biology Platform for Engineering Metabolic Pathways in <i>E. coli</i> . ACS Synthetic Biology, 2012, 1, 256-266.	3.8	230
148	Development of Non-Natural Flavanones as Antimicrobial Agents. PLoS ONE, 2011, 6, e25681.	2.5	31
149	Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metabolic Engineering, 2011, 13, 578-587.	7.0	300
150	Melanization of flavonoids by fungal and bacterial laccases. Yeast, 2011, 28, 181-188.	1.7	31
151	Optimization of a heterologous pathway for the production of flavonoids from glucose. Metabolic Engineering, 2011, 13, 392-400.	7.0	276
152	High-Yield Resveratrol Production in Engineered Escherichia coli. Applied and Environmental Microbiology, 2011, 77, 3451-3460.	3.1	231
153	An integrated computational and experimental study to increase the intra-cellular malonyl-CoA: Application to flavanone synthesis. , $2011, \ldots$		1
154	Bioavailability and Recent Advances in the Bioactivity of Flavonoid and Stilbene Compounds. Current Organic Chemistry, 2010, 14, 1727-1751.	1.6	26
155	Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metabolic Engineering, 2010, 12, 96-104.	7.0	178
156	A Versatile Microbial System for Biosynthesis of Novel Polyphenols with Altered Estrogen Receptor Binding Activity. Chemistry and Biology, 2010, 17, 392-401.	6.0	29
157	Natural Products for Type II Diabetes Treatment. Advances in Applied Microbiology, 2010, 71, 21-73.	2.4	62
158	Metabolic engineering of <i>Escherichia coli </i> for biofuel production. Biofuels, 2010, 1, 493-504.	2.4	33
159	Expanding the repertoire of biofuel alternatives through metabolic pathway evolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 965-966.	7.1	11
160	Biosynthesis and biotechnological production of flavanones: current state and perspectives. Applied Microbiology and Biotechnology, 2009, 83, 799-808.	3.6	137
161	Increased Malonyl Coenzyme A Biosynthesis by Tuning the <i>Escherichia coli</i> Metabolic Network and Its Application to Flavanone Production. Applied and Environmental Microbiology, 2009, 75, 5831-5839.	3.1	185
162	Microbial Biosynthesis of Fine Chemicals. , 2009, , .		0

#	Article	IF	CITATIONS
163	Trends In Microbial Synthesis of Natural Products and Biofuels. Advances in Enzymology and Related Areas of Molecular Biology, 2009, 76, 151-217.	1.3	17
164	Highâ€yield anthocyanin biosynthesis in engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2008, 100, 126-140.	3.3	113
165	Metabolic engineering for plant natural product biosynthesis in microbes. Current Opinion in Biotechnology, 2008, 19, 597-605.	6.6	200
166	Flavonoid Biotransformations in Microorganisms. , 2008, , 191-255.		6
167	Strain Improvement of Recombinant <i>Escherichia coli</i> for Efficient Production of Plant Flavonoids. Molecular Pharmaceutics, 2008, 5, 257-265.	4.6	223
168	Characterization of dihydroflavonol 4-reductases for recombinant plant pigment biosynthesis applications. Biocatalysis and Biotransformation, 2008, 26, 243-251.	2.0	19
169	Engineering of Artificial Plant Cytochrome P450 Enzymes for Synthesis of Isoflavones by <i>Escherichia coli</i> Applied and Environmental Microbiology, 2007, 73, 7246-7251.	3.1	125
170	Metabolic Engineering. Cell Engineering, 2007, , 301-359.	0.4	3
171	Combinatorial Mutasynthesis of Flavonoid Analogues from Acrylic Acids in Microorganisms. Organic Letters, 2007, 9, 1855-1858.	4.6	57
172	Biosynthesis of 5â€deoxyflavanones in microorganisms. Biotechnology Journal, 2007, 2, 1250-1262.	3. 5	54
173	Engineering Central Metabolic Pathways for High-Level Flavonoid Production in Escherichia coli. Applied and Environmental Microbiology, 2007, 73, 3877-3886.	3.1	239
174	Standardized biosynthesis of flavan-3-ols with effects on pancreatic beta-cell insulin secretion. Applied Microbiology and Biotechnology, 2007, 77, 797-807.	3.6	54
175	Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microbial Cell Factories, 2006, 5, 20.	4.0	87
176	Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metabolic Engineering, 2006, 8, 172-181.	7.0	164
177	Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Applied Microbiology and Biotechnology, 2006, 70, 85-91.	3.6	75
178	Evolutionary metabolic engineering. Metabolic Engineering, 2005, 7, 1-3.	7.0	15
179	Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Current Opinion in Biotechnology, 2005, 16, 361-366.	6.6	92
180	Investigation of Two Distinct Flavone Synthases for Plant-Specific Flavone Biosynthesis in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 71, 8241-8248.	3.1	105

#	Article	IF	CITATION
181	Biosynthesis of Natural Flavanones in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 71, 5610-5613.	3.1	203
182	Metabolic Engineering of Anthocyanin Biosynthesis in Escherichia coli. Applied and Environmental Microbiology, 2005, 71, 3617-3623.	3.1	148
183	Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metabolic Engineering, 2003, 5, 32-41.	7.0	94
184	Effect of Pyruvate Carboxylase Overexpression on the Physiology of Corynebacterium glutamicum. Applied and Environmental Microbiology, 2002, 68, 5422-5428.	3.1	43
185	Metabolic Engineering. Annual Review of Biomedical Engineering, 1999, 1, 535-557.	12.3	69
186	Sequence of the Corynebacterium glutamicum pyruvate carboxylase gene. Applied Microbiology and Biotechnology, 1998, 50, 346-352.	3.6	23