Ehsan Soheyli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3067517/publications.pdf

Version: 2024-02-01

758635 839053 26 362 12 18 h-index citations g-index papers 26 26 26 343 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	AgNPs/QDs@GQDs nanocomposites developed as an ultrasensitive impedimetric aptasensor for ractopamine detection. Materials Science and Engineering C, 2020, 108, 110507.	3.8	30
2	Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging. Materials Science and Engineering C, 2020, 111, 110807.	3.8	29
3	Synthesis and photoluminescence properties of Ru-doped ZnS quantum dots. Journal of Luminescence, 2017, 187, 421-427.	1.5	28
4	Enhanced electrochemical and electro-optical properties of nematic liquid crystal doped with Ni:ZnCdS/ZnS core/shell quantum dots. Journal of Molecular Liquids, 2020, 320, 114373.	2.3	25
5	Synthesis and optimization of emission characteristics of water-dispersible ag-in-s quantum dots and their bactericidal activity. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110389.	2.5	24
6	Luminescent, low-toxic and stable gradient-alloyed Fe:ZnSe(S)@ZnSe(S) core:shell quantum dots as a sensitive fluorescent sensor for lead ions. Nanotechnology, 2018, 29, 445602.	1.3	21
7	Aqueous based synthesis of N-acetyl- I -cysteine capped ZnSe nanocrystals with intense blue emission. Optical Materials, 2016, 60, 564-570.	1.7	20
8	Aqueous-based synthesis of Cd-free and highly emissive Fe-doped ZnSe(S)/ZnSe(S) core/shell quantum dots with antibacterial activity. Journal of Colloid and Interface Science, 2018, 529, 520-530.	5 . O	17
9	pH-dependent optical properties of N-acetyl-L-cysteine-capped ZnSe(S) nanocrystals with intense/stable emissions. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	16
10	Preparation of highly emissive and reproducible Cu–In–S/ZnS core/shell quantum dots with a mid-gap emission character. Journal of Alloys and Compounds, 2020, 824, 153906.	2.8	16
11	An electrochemical tyrosinamide aptasensor using a glassy carbon electrode modified by N-acetyl-l-cysteine-capped Ag-In-S QDs. Materials Science and Engineering C, 2019, 102, 653-660.	3.8	15
12	Multi-colored type-I Ag-doped ZnCdS/ZnS core/shell quantum dots with intense emission. Ceramics International, 2019, 45, 11501-11507.	2.3	15
13	Facile, one-pot and scalable synthesis of highly emissive aqueous-based Ag,Ni:ZnCdS/ZnS core/shell quantum dots with high chemical and optical stability. Nanotechnology, 2017, 28, 475604.	1.3	13
14	Investigation of thermal and electrical conductivity of phosphate glasses containing two transition metal oxides, lithium oxide and calcium oxide. Physica Scripta, 2014, 89, 075801.	1.2	12
15	Preparation of quaternary boro-phosphate multifunctional glasses and their structural, optical, switching and antibacterial properties. Ceramics International, 2018, 44, 9414-9421.	2.3	12
16	Facile preparation of yellow and red emitting ZnCdSeS quantum dots and their third-order nonlinear optical properties. Journal of Physics and Chemistry of Solids, 2018, 120, 64-70.	1.9	11
17	Rational design of chemical bath deposition technique for successful preparation of Mn-doped CdS nanostructured thin films with controlled optical properties. Ceramics International, 2021, 47, 5523-5533.	2.3	11
18	Improved chemical deposition of cobalt-doped CdS nanostructured thin films via nucleation-doping strategy: Surface and optical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115328.	1.7	9

#	Article	IF	CITATIONS
19	Facile and versatile preparation of full-color emissive Fe-doped ZnCdSe/ZnS core/shell quantum dots by a novel aqueous-based colloidal approach. Journal of Luminescence, 2019, 205, 525-531.	1.5	7
20	Highly luminescent ZnCdTeS nanocrystals with wide spectral tunability for efficient color-conversion white-light-emitting-diodes. Journal Physics D: Applied Physics, 2021, 54, 505110.	1.3	7
21	Preparation of Highly Biocompatible ZnSe Quantum Dots Using a New Source of Acetyl Cysteine as Capping Agent. Journal of Fluorescence, 2017, 27, 1581-1586.	1.3	6
22	Long-time stable colloidal Zn–Ag–In–S quantum dots with tunable midgap-involved emission. Journal of Applied Physics, 2021, 129, 063107.	1.1	6
23	Excitation-independent deep-blue emitting carbon dots with 62% emission quantum efficiency and monoexponential decay profile for high-resolution fingerprint identification. Nanotechnology, 2022, 33, 445601.	1.3	4
24	Optical and structural characterization of quadruplet and quintuplet molybdenum-containing phosphate glasses. Modern Physics Letters B, 2016, 30, 1650270.	1.0	3
25	Hydrazine-assisted preparation of ZnS nanocrystals using N-acetyl-L-cysteine as capping agent. Modern Physics Letters B, 2018, 32, 1850254.	1.0	3
26	Antireflective and nanocolumnar-shaped Mn:ZnO films grown by chemical bath deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 278, 115634.	1.7	2