Mark A Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3067294/publications.pdf

Version: 2024-02-01

55 3,498 30 53
papers citations h-index g-index

56 56 56 2602 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Colloidal clusters on curved surfaces. Frontiers of Nanoscience, 2022, , 129-150.	0.3	O
2	Control of Superselectivity by Crowding in Three-Dimensional Hosts. Physical Review Letters, 2021, 126, 028002.	2.9	9
3	Nearest-neighbor connectedness theory: A general approach to continuum percolation. Physical Review E, 2021, 103, 042115.	0.8	5
4	Automated Coarse-Grained Mapping Algorithm for the Martini Force Field and Benchmarks for Membraneâ€"Water Partitioning. Journal of Chemical Theory and Computation, 2021, 17, 5777-5791.	2.3	35
5	Phase transitions on non-uniformly curved surfaces: coupling between phase and location. Soft Matter, 2020, 16, 8069-8077.	1.2	7
6	Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations. Journal of Chemical Physics, 2018, 148, 034903.	1.2	16
7	Controlling Fragment Competition on Pathways to Addressable Self-Assembly. Journal of Physical Chemistry B, 2018, 122, 9815-9825.	1.2	5
8	Nucleation on a sphere: the roles of curvature, confinement and ensemble. Molecular Physics, 2018, 116, 3008-3019.	0.8	6
9	Optimising minimal building blocks for addressable self-assembly. Soft Matter, 2017, 13, 7780-7792.	1.2	13
10	Quantification of Stereochemical Communication in Metal–Organic Assemblies. Angewandte Chemie, 2016, 128, 10774-10778.	1.6	8
11	Quantification of Stereochemical Communication in Metal–Organic Assemblies. Angewandte Chemie - International Edition, 2016, 55, 10616-10620.	7.2	21
12	Knot theory in modern chemistry. Chemical Society Reviews, 2016, 45, 6432-6448.	18.7	70
13	Dynamics and thermodynamics of decay in charged clusters. Molecular Physics, 2015, 113, 2428-2434.	0.8	8
14	Percolation in suspensions of hard nanoparticles: From spheres to needles. Europhysics Letters, 2015, 111, 56004.	0.7	61
15	Design strategies for self-assembly of discrete targets. Journal of Chemical Physics, 2015, 143, 044905.	1.2	19
16	Knots in soft condensed matter. Journal of Physics Condensed Matter, 2015, 27, 350301.	0.7	2
17	Energy landscapes, structural topologies and rearrangement mechanisms in clusters of dipolar particles. Soft Matter, 2013, 9, 5407.	1.2	32
18	Depletion-interaction effects on the tunneling conductivity of nanorod suspensions. Physical Review E, 2013, 88, 042140.	0.8	14

#	Article	IF	CITATIONS
19	Controlling the Folding and Substrate-Binding of Proteins Using Polymer Brushes. Physical Review Letters, 2012, 108, 208104.	2.9	14
20	Density Functional Theory for Baxter's Sticky Hard Spheres in Confinement. Physical Review Letters, 2012, 108, 047801.	2.9	8
21	Structure and stability of charged clusters. Journal of Physics Condensed Matter, 2012, 24, 284130.	0.7	8
22	Tunneling conductivity in composites of attractive colloids. Journal of Chemical Physics, 2012, 136, 164903.	1.2	16
23	Crystallization of Deformable Spherical Colloids. Physical Review Letters, 2010, 105, 088305.	2.9	30
24	Topological characteristics of model gels. Journal of Physics Condensed Matter, 2010, 22, 104109.	0.7	4
25	Dynamical arrest in low density dipolar colloidal gels. Journal of Chemical Physics, 2009, 130, 114507.	1.2	46
26	On structural correlations in the percolation of hard-core particles. Journal of Chemical Physics, 2009, 131, 066101.	1.2	22
27	The vanishing limit of the square-well fluid: The adhesive hard-sphere model as a reference system. Journal of Chemical Physics, 2008, 128, 134513.	1.2	67
28	Structural trends in clusters of quadrupolar spheres. Molecular Physics, 2008, 106, 1655-1664.	0.8	8
29	Energy Landscapes: From Clusters to Biomolecules. Advances in Chemical Physics, 2007, , 1-111.	0.3	153
30	Reversible gelation and dynamical arrest of dipolar colloids. Europhysics Letters, 2007, 78, 26002.	0.7	52
31	Importance of Metastable States in the Free Energy Landscapes of Polypeptide Chains. Physical Review Letters, 2007, 99, 178104.	2.9	39
32	Depletion-Induced Percolation in Networks of Nanorods. Physical Review Letters, 2007, 98, 108303.	2.9	104
33	Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. Journal of Chemical Physics, 2007, 127, 085106.	1.2	176
34	Patchy sticky hard spheres: Analytical study and Monte Carlo simulations. Journal of Chemical Physics, 2007, 127, 234507.	1.2	46
35	Novel Structural Motifs in Clusters of Dipolar Spheres:  Knots, Links, and Coils. Journal of Physical Chemistry B, 2005, 109, 23109-23112.	1.2	43
36	Phase diagram of the adhesive hard sphere fluid. Journal of Chemical Physics, 2004, 121, 535.	1.2	137

#	Article	IF	Citations
37	Simulating colloids with BaxterÂs adhesive hard sphere model. Journal of Physics Condensed Matter, 2004, 16, S4901-S4912.	0.7	52
38	Competition of Percolation and Phase Separation in a Fluid of Adhesive Hard Spheres. Physical Review Letters, 2003, 90, 135702.	2.9	130
39	The formation of cyclic water complexes by sequential ring insertion: Experiment and theory. Journal of Chemical Physics, 2002, 117, 1109-1122.	1.2	134
40	Why Is It So Difficult To Simulate Entropies, Free Energies, and Their Differences?. Accounts of Chemical Research, 2001, 34, 607-614.	7.6	53
41	Should one adjust the maximum step size in a Metropolis Monte Carlo simulation?. Chemical Physics Letters, 2000, 331, 278-284.	1.2	31
42	Efficient free energy calculations by variationally optimized metric scaling: Concepts and applications to the volume dependence of cluster free energies and to solid–solid phase transitions. Journal of Chemical Physics, 2000, 113, 7035-7046.	1.2	42
43	Structural relaxation in Morse clusters: Energy landscapes. Journal of Chemical Physics, 1999, 110, 328-334.	1.2	114
44	Evolution of the potential energy surface with size for Lennard-Jones clusters. Journal of Chemical Physics, 1999, 111, 8417-8428.	1.2	222
45	Energy landscape of a model protein. Journal of Chemical Physics, 1999, 111, 6610-6616.	1.2	115
46	Structural relaxation in atomic clusters: Master equation dynamics. Physical Review E, 1999, 60, 3701-3718.	0.8	86
47	The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. Journal of Chemical Physics, 1999, 110, 6896-6906.	1.2	279
48	Role of Configurational Gating in Intracomplex Electron Transfer from Cytochrome c to the Radical Cation in Cytochrome c Peroxidase. Biochemistry, 1999, 38, 6846-6854.	1.2	70
49	Archetypal energy landscapes. Nature, 1998, 394, 758-760.	13.7	528
50	Thermodynamics and the global optimization of Lennard-Jones clusters. Journal of Chemical Physics, 1998, 109, 8143-8153.	1.2	178
51	Isomerization dynamics and ergodicity in Ar7. Journal of Chemical Physics, 1997, 107, 8568-8574.	1.2	39
52	Identifying the Physiological Electron Transfer Site of CytochromecPeroxidase by Structure-Based Engineeringâ€. Biochemistry, 1996, 35, 667-673.	1.2	44
53	Structure, rearrangements and evaporation of rotating atomic clusters. Molecular Physics, 1996, 89, 533-554.	0.8	11
54	Design of a Rutheniumâ^'CytochromecDerivative To Measure Electron Transfer to the Radical Cation and Oxyferryl Heme in CytochromecPeroxidaseâ€. Biochemistry, 1996, 35, 15107-15119.	1.2	64

#	Article	IF	CITATIONS
55	Controlling polymorphism: general discussion. Faraday Discussions, 0, 235, 508-535.	1.6	2