
Francisco Estrada Porrúa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3067237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global economic assessment of city policies to reduce climate change impacts. Nature Climate Change, 2017, 7, 403-406.	18.8	187
2	Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nature Geoscience, 2013, 6, 1050-1055.	12.9	115
3	Economic losses from US hurricanes consistent with an influence from climate change. Nature Geoscience, 2015, 8, 880-884.	12.9	110
4	Global and hemispheric temperatures revisited. Climatic Change, 2009, 94, 333-349.	3.6	81
5	Objective probabilities about future climate are a matter of opinion. Climatic Change, 2010, 99, 27-46.	3.6	43
6	A Time-Series Analysis of the 20th Century Climate Simulations Produced for the IPCC's Fourth Assessment Report. PLoS ONE, 2013, 8, e60017.	2.5	26
7	Extracting and Analyzing the Warming Trend in Global and Hemispheric Temperatures. Journal of Time Series Analysis, 2017, 38, 711-732.	1.2	23
8	Spatial prioritization for biodiversity conservation in a megadiverse country. Anthropocene, 2020, 32, 100267.	3.3	23
9	A reply to "Does temperature contain a stochastic trend? Evaluating conflicting statistical results― by R. K. Kaufmann et al. Climatic Change, 2010, 101, 407-414.	3.6	22
10	Detection and attribution of climate change through econometric methods. Boletin De La Sociedad Matematica Mexicana, 2014, 20, 107-136.	0.7	20
11	Shutting Down the Thermohaline Circulation. American Economic Review, 2016, 106, 602-606.	8.5	20
12	The persistence of shocks in GDP and the estimation of the potential economic costs of climate change. Environmental Modelling and Software, 2015, 69, 155-165.	4.5	19
13	Synergistic impacts of global warming and thermohaline circulation collapse on amphibians. Communications Biology, 2021, 4, 141.	4.4	19
14	A methodology for the risk assessment of climate variability and change under uncertainty. A case study: coffee production in Veracruz, Mexico. Climatic Change, 2012, 113, 455-479.	3.6	18
15	A cautionary note on automated statistical downscaling methods for climate change. Climatic Change, 2013, 120, 263-276.	3.6	16
16	Global economic impacts of climate variability and change during the 20th century. PLoS ONE, 2017, 12, e0172201.	2.5	14
17	Spatial variations in the warming trend and the transition to more severe weather in midlatitudes. Scientific Reports, 2021, 11, 145.	3.3	14
18	Economic impacts and risks of climate change under failure and success of the Paris Agreement. Annals of the New York Academy of Sciences, 2021, 1504, 95-115.	3.8	14

#	Article	IF	CITATIONS
19	Impacts of land management and climate change in a developing and socioenvironmental challenging transboundary region. Journal of Environmental Management, 2021, 300, 113748.	7.8	12
20	Inference related to common breaks in a multivariate system with joined segmented trends with applications to global and hemispheric temperatures. Journal of Econometrics, 2020, 214, 130-152.	6.5	10
21	Anthropogenic influence in observed regional warming trends and the implied social time of emergence. Communications Earth & Environment, 2021, 2, .	6.8	10
22	Disentangling the trend in the warming of urban areas into global and local factors. Annals of the New York Academy of Sciences, 2021, 1504, 230-246.	3.8	9
23	Characterizing and attributing the warming trend in sea and land surface temperatures. Atmosfera, 2017, 30, 163-187.	0.8	8
24	Evaluating Risk and Possible Adaptations to Climate Change Under a Socio-Ecological System Approach. Frontiers in Climate, 2021, 3, .	2.8	8
25	Causality from longâ€lived radiative forcings to the climate trend. Annals of the New York Academy of Sciences, 2019, 1436, 195-205.	3.8	7
26	The Assessment of Impacts and Risks of Climate Change on Agriculture (AIRCCA) model: a tool for the rapid global risk assessment for crop yields at a spatially explicit scale. Spatial Economic Analysis, 2020, 15, 262-279.	1.6	7
27	Extending integrated assessment models′ damage functions to include adaptation and dynamic sensitivity. Environmental Modelling and Software, 2019, 121, 104504.	4.5	6
28	CLIMRISK-RIVER: Accounting for local river flood risk in estimating the economic cost of climate change. Environmental Modelling and Software, 2020, 132, 104784.	4.5	6
29	Time of emergence of economic impacts of climate change. Environmental Research Letters, 2021, 16, 074039.	5.2	6
30	Temperature Effects on Electricity and Gas Consumption: Empirical Evidence from Mexico and Projections under Future Climate Conditions. Sustainability, 2021, 13, 305.	3.2	6
31	The new national climate change documents of Mexico: what do the regional climate change scenarios represent?. Climatic Change, 2012, 110, 1029-1046.	3.6	5
32	Preconditioning of the precipitation interannual variability in southern Mexico and Central America by oceanic and atmospheric anomalies. International Journal of Climatology, 2020, 40, 3906-3921.	3.5	4
33	TOWARD IMPACT FUNCTIONS FOR STOCHASTIC CLIMATE CHANGE. Climate Change Economics, 2015, 06, 1550015.	5.0	3
34	Economic Assessment of Mitigating Damage of Flood Events: Cost–Benefit Analysis of Flood-Proofing Commercial Buildings in Umbria, Italy. Geneva Papers on Risk and Insurance: Issues and Practice, 2017, 42, 585-608.	2.1	3
35	Methodological issues in natural disaster loss normalisation studies. Environmental Hazards, 2021, 20, 112-115.	2.5	3
36	The economics of climate change in Mexico: implications for national/regional policy. Climate Policy, 2013, 13, 738-750.	5.1	2

#	Article	IF	CITATIONS
37	Inference Related to Common Breaks in a Multivariate System With Joined Segmented Trends With Applications to Global and Hemispheric Temperatures. SSRN Electronic Journal, 2018, , .	0.4	1
38	An Analysis of Current Sustainability of Mexican Cities and Their Exposure to Climate Change. Frontiers in Environmental Science, 2020, 8, .	3.3	1
39	Fuzzy Models: Easier to Understand and an Easier Way to Handle Uncertainties in Climate Change Research. Advances in Intelligent Systems and Computing, 2014, , 223-237.	0.6	1
40	Preface to the thematic issue on Climate, economics and statistics. Atmosfera, 2017, 30, i-ii.	0.8	0
41	Future Thermal Assessment for the Phenological Development of Potato [Solanum tuberosum (L.)] in Cuba. Environmental Sciences Proceedings, 2020, 4, .	0.3	0