Constantinos Soutis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3067130/publications.pdf

Version: 2024-02-01

354 papers 14,984 citations

28736 57 h-index 28425 109 g-index

367 all docs

367 docs citations

367 times ranked

10142 citing authors

#	Article	IF	CITATIONS
1	Direct-write piezoelectric coating transducers in combination with discrete ceramic transducer and laser pulse excitation for ultrasonic impact damage detection on composite plates. Structural Health Monitoring, 2022, 21, 1645-1660.	4.3	7
2	Bimodal Microwave Method for Thickness Estimation of Surface Coatings on Polymer Composites. Advanced Engineering Materials, 2022, 24, 2100494.	1.6	6
3	Progress in interlaminar toughening of aerospace polymer composites using particles and non-woven veils. Aeronautical Journal, 2022, 126, 222-248.	1.1	13
4	Review on Manufacture of Military Composite Helmet. Applied Composite Materials, 2022, 29, 305-323.	1.3	10
5	Detection and analysis of metallic contaminants in dry foods using a microwave resonator sensor. Food Control, 2022, 133, 108634.	2.8	14
6	A new microwave cavity resonator sensor for measuring coating thickness on carbon fibre composites. NDT and E International, 2022, 126, 102584.	1.7	7
7	Numerical Investigation of Multi-scale Characteristics of Single and Multi-layered Woven Structures. Applied Composite Materials, 2022, 29, 405.	1.3	8
8	Accurate Thickness Measurement of Multiple Coating Layers on Carbon Fiber Composites Using Microwave Cavity Perturbation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	3
9	Enhancement of Output Performance of Triboelectric Nanogenerator by Switchable Stimuli in Metal–Organic Frameworks for Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16424-16434.	4.0	28
10	Application of deep neural network learning in composites design. European Journal of Materials, 2022, 2, 117-170.	0.8	12
11	On mode-I and mode-II interlaminar crack migration and R-curves in carbon/epoxy laminates with hybrid toughening via core-shell rubber particles and thermoplastic micro-fibre veils. Composites Part B: Engineering, 2022, 238, 109900.	5. 9	21
12	Lamb waves-based technologies for structural health monitoring of composite structures for aircraft applications. European Journal of Materials, 2022, 2, 436-474.	0.8	19
13	Lightweight Selfâ€Forming Superâ€Elastic Mechanical Metamaterials with Adaptive Stiffness. Advanced Functional Materials, 2021, 31, 2008252.	7.8	14
14	Transient conduction for thermal diffusivity simulation of a graphene/polymer and its full-field validation with image reconstruction. Composite Structures, 2021, 256, 113141.	3.1	2
15	Development of a fire detection and suppression system for a smart air cargo container. Aeronautical Journal, 2021, 125, 205-222.	1.1	10
16	Toughening mechanisms in cost-effective carbon-epoxy laminates with thermoplastic veils: Mode-I and in-situ SEM fracture characterisation. International Journal of Lightweight Materials and Manufacture, 2021, 4, 50-61.	1.3	12
17	Review of microwave techniques used in the manufacture and fault detection of aircraft composites. Aeronautical Journal, 2021, 125, 151-179.	1.1	25
18	Effect of nanoscale defects on the thermal conductivity of graphene. Materials Today Communications, 2021, 26, 101856.	0.9	9

#	Article	IF	Citations
19	A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVIDâ€19 and Other Viruses. Advanced Materials, 2021, 33, e2005448.	11.1	151
20	Interface Engineering Based on Multinanoscale Heterojunctions between NiO Quantum Dots, N-Doped Amorphous Carbon and Ni for Advanced Supercapacitor. ACS Applied Energy Materials, 2021, 4, 3221-3230.	2.5	24
21	Simple Preparation of Baroque Mn-Based Chalcogenide/Honeycomb-like Carbon Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Energ	2.5	4
22	Characterisation and analysis of alcohol in baijiu with a microwave cavity resonator. LWT - Food Science and Technology, 2021, 141, 110849.	2.5	15
23	Dielectric spectroscopy of Baijiu over 2–20ÂGHz using an openâ€ended coaxial probe. Journal of Food Science, 2021, 86, 2513-2524.	1.5	18
24	Towards a Circular Economy in the Aviation Sector Using Eco-Composites for Interior and Secondary Structures. Results and Recommendations from the EU/China Project ECO-COMPASS. Aerospace, 2021, 8, 131.	1.1	16
25	Fracture Toughness of Hybrid Carbon Fibre/Epoxy Enhanced by Graphene and Carbon Nanotubes. Applied Composite Materials, 2021, 28, 1111-1125.	1.3	12
26	Deployable self-regulating centrifugally-stiffened decelerator (DESCENT): Design scalability and low altitude drop test. Aerospace Science and Technology, 2021, 114, 106710.	2.5	4
27	Direct-Write Piezoelectric Transducers on Carbon-Fiber-Reinforced Polymer Structures for Exciting and Receiving Guided Ultrasonic Waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2733-2740.	1.7	5
28	π - π interaction between carbon fibre and epoxy resin for interface improvement in composites. Composites Part B: Engineering, 2021, 220, 108983.	5.9	79
29	A Numerical Analysis of Resin Flow in Woven Fabrics: Effect of Local Tow Curvature on Dual-Scale Permeability. Materials, 2021, 14, 405.	1.3	6
30	The International Symposium on Smart Aircraft – A Special Issue. Aeronautical Journal, 2021, 125, 1-2.	1.1	1
31	A Microwave Coaxial Sensor for Non-Destructive Detection and Analysis of Cracked Teeth. Russian Journal of Nondestructive Testing, 2021, 57, 909-917.	0.3	4
32	Tensile and flexural behaviour of a graphene/epoxy composite: experiments and simulation. JPhys Materials, 2020, 3, 014006.	1.8	9
33	Patterned, morphing composites <i>via</i> maskless photo-click lithography. Soft Matter, 2020, 16, 1270-1278.	1.2	3
34	Pressure response and life assessment of filament-wound composite pipes after impact. International Journal of Lightweight Materials and Manufacture, 2020, 3, 365-375.	1.3	4
35	Fire Safety Assessment of Epoxy Composites Reinforced by Carbon Fibre and Graphene. Applied Composite Materials, 2020, 27, 619-639.	1.3	5
36	Cationic Covalent Organic Frameworks for Fabricating an Efficient Triboelectric Nanogenerator. , 2020, 2, 1691-1697.		42

#	Article	IF	Citations
37	Impact Response of Curved Composite Laminates: Effect of Radius and Thickness. Applied Composite Materials, 2020, 27, 555-573.	1.3	8
38	Recent Advances in Structural Integrity of Engineering Composite Materials. Applied Composite Materials, 2020, 27, 447-448.	1.3	1
39	Damage Detection in Composites By Artificial Neural Networks Trained By Using in Situ Distributed Strains. Applied Composite Materials, 2020, 27, 657-671.	1.3	32
40	Conjugated Covalent Organic Frameworks as Platinum Nanoparticle Supports for Catalyzing the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 9747-9752.	3.2	68
41	Impact Damage Characteristics of Carbon Fibre Metal Laminates: Experiments and Simulation. Applied Composite Materials, 2020, 27, 511-531.	1.3	11
42	Dicarboxylic acid-epoxy vitrimers: influence of the off-stoichiometric acid content on cure reactions and thermo-mechanical properties. Polymer Chemistry, 2020, 11, 5327-5338.	1.9	55
43	Cream roll-inspired advanced MnS/C composite for sodium-ion batteries: encapsulating MnS cream into hollow N,S-co-doped carbon rolls. Nanoscale, 2020, 12, 8493-8501.	2.8	41
44	Bromineâ€Functionalized Covalent Organic Frameworks for Efficient Triboelectric Nanogenerator. Chemistry - A European Journal, 2020, 26, 5784-5788.	1.7	40
45	Aerospace engineering requirements in building with composites. , 2020, , 3-22.		19
46	Novel lactoneâ€layered double hydroxide ionomer powders for bone tissue repair. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2835-2846.	1.6	5
47	Multiscale image-based modelling of damage and fracture in carbon fibre reinforced polymer composites. Composites Science and Technology, 2020, 198, 108243.	3.8	20
48	Threeâ€dimensional finiteâ€element analysis multiphysics modelling of electromagnetic Joule heating in carbon fibre composites. IET Electric Power Applications, 2020, 14, 1966-1973.	1.1	3
49	Laserâ \in eided curing of a GnP/epoxy nanocomposite optimised by multiscale finite element analysis. Material Design and Processing Communications, 2019, 1, e32.	0.5	0
50	Evolution of kink bands in a notched unidirectional carbon fibre-epoxy composite under four-point bending. Composites Science and Technology, 2019, 172, 143-152.	3.8	38
51	How green composite materials could benefit aircraft construction. Science China Technological Sciences, 2019, 62, 1478-1480.	2.0	10
52	Downrange manoeuvre and oscillation suppression of a self-regulating centrifugally deployed flexible heat shield using a controlled reaction wheel. Acta Astronautica, 2019, 161, 415-424.	1.7	4
53	A review of microwave testing of glass fibre-reinforced polymer composites. Nondestructive Testing and Evaluation, 2019, 34, 429-458.	1.1	47
54	Infrared thermography for void mapping of a graphene/epoxy composite and its fullâ€field thermal simulation. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 1441-1453.	1.7	14

#	Article	IF	CITATIONS
55	Modelling corrosion effect on stiffness of automotive suspension springs. Material Design and Processing Communications, 2019, 1, e25.	0.5	0
56	Vibration frequency analysis of three-layered cylinder shaped shell with effect of FGM central layer thickness. Scientific Reports, 2019, 9, 1566.	1.6	10
57	Image reconstruction and characterisation of defects in a carbon fibre/epoxy composite monitored with guided waves. Smart Materials and Structures, 2019, 28, 065001.	1.8	14
58	Vibration Analysis of a Three-Layered FGM Cylindrical Shell Including the Effect Of Ring Support. Open Physics, 2019, 17, 587-600.	0.8	4
59	Determination of interfacial shear strength in continuous fibre composites by multi-fibre fragmentation: A review. Composites Part A: Applied Science and Manufacturing, 2019, 118, 281-292.	3.8	13
60	X-band microwave characterisation and analysis of carbon fibre-reinforced polymer composites. Composite Structures, 2019, 208, 224-232.	3.1	47
61	The Editor-in-Chief Writes Applied Composite Materials, 2019, 26, 1311-1312.	1.3	0
62	Experimental electrical characterisation of carbon fibre composites for use in future aircraft applications. IET Science, Measurement and Technology, 2019, 13, 1131-1138.	0.9	10
63	Graphene in aerospace composites: Characterising thermal response. AIP Conference Proceedings, 2018, , .	0.3	12
64	Distributed internal strain measurement of the fluid-solid state coefficients of thermal expansion below the glass transition temperature during a composite manufacturing process. Journal of Composite Materials, 2018, 52, 3053-3084.	1.2	5
65	Lactone-layered double hydroxide networks: Towards self-assembled bioscaffolds. Applied Clay Science, 2018, 153, 246-256.	2.6	7
66	Simulated electrical response of randomly distributed and aligned graphene/polymer nanocomposites. Composite Structures, 2018, 192, 452-459.	3.1	17
67	Detection of Impact Damage in Carbon Fiber Composites Using an Electromagnetic Sensor. Research in Nondestructive Evaluation, 2018, 29, 123-142.	0.5	17
68	Finite element modelling of air cavities effect on GnP/epoxy nanocomposite thermal response and its full-field validation. MATEC Web of Conferences, 2018, 188, 01014.	0.1	0
69	Tensile Properties of a Novel Graphene Pattern Stitched Carbon/Epoxy 3D Composite. IOP Conference Series: Materials Science and Engineering, 2018, 460, 012015.	0.3	4
70	Flexural Properties of Wet-Laid Hybrid Nonwoven Recycled Carbon and Flax Fibre Composites in Poly-Lactic Acid Matrix. Aerospace, 2018, 5, 120.	1.1	22
71	Damage Detection in a Composite T-Joint Using Guided Lamb Waves. Aerospace, 2018, 5, 40.	1.1	27
72	Fatigue behaviour of fibre-reinforced composite T-joints. MATEC Web of Conferences, 2018, 165, 07004.	0.1	1

#	Article	IF	CITATIONS
73	Corrosion behaviour of an industrial shot-peened and coated automotive spring steel AISI 9254. Corrosion Engineering Science and Technology, 2018, 53, 564-573.	0.7	7
74	A Simulation-Assisted Non-destructive Approach for Permittivity Measurement Using an Open-Ended Microwave Waveguide. Journal of Nondestructive Evaluation, 2018, 37, 1.	1.1	22
75	Surface Modification of Aramid Fibres with Graphene Oxide for Interface Improvement in Composites. Applied Composite Materials, 2018, 25, 843-852.	1.3	44
76	A finite element and experimental analysis of durability tested springs. MATEC Web of Conferences, 2018, 165, 03017.	0.1	2
77	Flexible heat shields deployed by centrifugal force. Acta Astronautica, 2018, 152, 78-87.	1.7	11
78	Rigidisation of deployable space polymer membranes by heat-activated self-folding. Smart Materials and Structures, 2018, 27, 105037.	1.8	6
79	Heliogyro solar sail with self-regulated centrifugal deployment enabled by an origami-inspired morphing reflector. Acta Astronautica, 2018, 152, 242-253.	1.7	22
80	Principles and Applications of Microwave Testing for Woven and Non-Woven Carbon Fibre-Reinforced Polymer Composites: a Topical Review. Applied Composite Materials, 2018, 25, 965-982.	1.3	35
81	2.11 Compression Failure of Laminated Composites. , 2018, , 221-231.		1
82	A Finite Element and Experimental Analysis of Composite T-Joints Used in Wind Turbine Blades. Applied Composite Materials, 2018, 25, 953-964.	1.3	5
83	Compressive Behaviour of Honeycomb Sandwich Panels with Thin Composite Face-Sheets., 2018,, 693-700.		0
84	Passive and active monitoring for defect detection and quantification in composites. , 2018, , .		1
85	On the high-rate failure of carbon fibre composites. AIP Conference Proceedings, 2017, , .	0.3	3
86	A finite element analysis of bolted joints loaded in tension: protruding head and countersunk fastener. International Journal of Structural Integrity, 2017, 8, 35-50.	1.8	4
87	A decade of science and engineering of composite materials at the North West Composites Centre, University of Manchester, UK. Applied Composite Materials, 2017, 24, 277-279.	1.3	1
88	Effect of pre and Post-Dispersion on Electro-Thermo-Mechanical Properties of a Graphene Enhanced Epoxy. Applied Composite Materials, 2017, 24, 313-336.	1.3	28
89	The Effect of Shear Mixing Speed and Time on the Mechanical Properties of GNP/Epoxy Composites. Applied Composite Materials, 2017, 24, 301-311.	1.3	39
90	X-ray computed tomography study of kink bands in unidirectional composites. Composite Structures, 2017, 160, 917-924.	3.1	69

#	Article	IF	Citations
91	Predictive Model of Graphene Based Polymer Nanocomposites: Electrical Performance. Applied Composite Materials, 2017, 24, 281-300.	1.3	44
92	Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes. Applied Composite Materials, 2017, 24, 397-416.	1.3	4
93	A morphing aerofoil with highly controllable aerodynamic performance. Aeronautical Journal, 2017, 121, 54-72.	1.1	27
94	Damage and Failure Analysis of Bolted Joints in Composite Laminates. , 2017, , 591-644.		0
95	The effect of z-binding yarns on the electrical properties of 3D woven composites. Composite Structures, 2017, 182, 606-616.	3.1	23
96	Dielectric constant of a three-dimensional woven glass fibre composite: Analysis and measurement. Composite Structures, 2017, 180, 853-861.	3.1	35
97	The quantification of impact damage distribution in composite laminates by analysis of X-ray computed tomograms. Composites Science and Technology, 2017, 152, 139-148.	3.8	62
98	Thermal Diffusivity Mapping of Graphene Based Polymer Nanocomposites. Scientific Reports, 2017, 7, 5536.	1.6	64
99	Evaluation of water content in honey using microwave transmission line technique. Journal of Food Engineering, 2017, 215, 113-125.	2.7	22
100	Modelling low velocity impact induced damage in composite laminates. Mechanics of Advanced Materials and Modern Processes, 2017, 3, .	2.2	28
101	Fitness Considerations for Contemporary Composite Materials: (Who's Afraid of the Composite) Tj ETQq1 1	0.784314 1.3	rgBT /Overlo
102	Early Damage Detection in Composites by Distributed Strain and Acoustic Event Monitoring. Procedia Engineering, 2017, 188, 88-95.	1.2	15
103	Microwaves Sensor for Wind Turbine Blade Inspection. Applied Composite Materials, 2017, 24, 495-512.	1.3	29
104	Bolted Joints in Three Axially Braided Carbon Fibre/Epoxy Textile Composites with Moulded-in and Drilled Fastener Holes. Applied Composite Materials, 2017, 24, 449-460.	1.3	6
105	Structural Health Monitoring Using Lamb Wave Reflections and Total Focusing Method for Image Reconstruction. Applied Composite Materials, 2017, 24, 553-573.	1.3	40
106	Fatigue Behaviour of Composite T-Joints in Wind Turbine Blade Applications. Applied Composite Materials, 2017, 24, 461-475.	1.3	28
107	Investigating the Potential of Using Off-Axis 3D Woven Composites in Composite Joints' Applications. Applied Composite Materials, 2017, 24, 377-396.	1.3	23
108	Applications of microwave techniques for aerospace composites. , 2017, , .		7

#	Article	IF	CITATIONS
109	Early Damage Detection in Composites during Fabrication and Mechanical Testing. Materials, 2017, 10, 685.	1.3	44
110	Recent advancements in mechanical characterisation of 3D woven composites. Mechanics of Advanced Materials and Modern Processes, 2017, 3 , .	2.2	51
111	Delamination Detection in Composite T-Joints of Wind Turbine Blades using Microwaves. Advanced Composites Letters, 2016, 25, 096369351602500.	1.3	7
112	Transverse Crack Detection in 3D Angle Interlock Glass Fibre Composites Using Acoustic Emission. Materials, 2016, 9, 699.	1.3	16
113	Dedication: Prof. Tony Kelly CBE FRS (1929–2014). Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160038.	1.6	0
114	A comparison of different approaches for imaging cracks in composites by X-ray microtomography. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160037.	1.6	37
115	Microwave imaging for delamination detection in T-joints of wind turbine composite blades. , 2016, , .		6
116	Multiscale modelling of the structural integrity of composite materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150284.	1.6	0
117	Internal instability as a possible failure mechanism for layered composites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160019.	1.6	6
118	Summary and concluding remarks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160075.	1.6	3
119	Characterising the loading direction sensitivity of 3D woven composites: Effect of z-binder architecture. Composites Part A: Applied Science and Manufacturing, 2016, 90, 577-588.	3.8	89
120	Dynamic damage in carbon-fibre composites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160018.	1.6	6
121	Generation of micro-scale finite element models from synchrotron X-ray CT images for multidirectional carbon fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 2016, 91, 85-95.	3.8	74
122	Modelling the effect of tufted yarns in composite T-joints. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2016, 169, 158-170.	0.4	2
123	Influence of ring support on free vibration of sandwich functionally graded cylindrical shells with middle layer of isotropic material. Journal of Engineering Research, 2016, 4, .	0.4	1
124	Structural integrity of engineering composite materials: a cracking good yarn. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160057.	1.6	4
125	Modelling of stiffness degradation due to cracking in laminates subjected to multi-axial loading. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160017.	1.6	6
126	Application of an electromagnetic sensor for detection of impact damage in aircraft composites. , 2016, , .		6

#	Article	IF	CITATIONS
127	Micro-mechanics based damage mechanics for 3D orthogonal woven composites: Experiment and numerical modelling. Composite Structures, 2016, 156, 115-124.	3.1	37
128	Modelling transverse matrix cracking and splitting of cross-ply composite laminates under four point bending. Theoretical and Applied Fracture Mechanics, 2016, 83, 73-81.	2.1	38
129	Detection and evaluation of damage in aircraft composites using electromagnetically coupled inductors. Composite Structures, 2016, 140, 252-261.	3.1	28
130	Low-velocity impact of composite laminates. , 2016, , 117-146.		10
131	Impact damage tolerance of thermoset composites reinforced with hybrid commingled yarns. Composites Part B: Engineering, 2016, 91, 522-538.	5.9	93
132	Compression failure of compositeÂlaminates. , 2016, , 197-211.		1
133	Evolution of damage during the fatigue of 3D woven glass-fibre reinforced composites subjected to tension–tension loading observed by time-lapse X-ray tomography. Composites Part A: Applied Science and Manufacturing, 2016, 82, 279-290.	3.8	85
134	Novelty detection and dimension reduction via guided ultrasonic waves: Damage monitoring of scarf repairs in composite laminates. Journal of Intelligent Material Systems and Structures, 2016, 27, 549-566.	1.4	31
135	MULTI-SCALE FINITE ELEMENT ANALYSIS OF GRAPHENE/POLYMER NANOCOMPOSITES ELECTRICAL PERFORMANCE., 2016,,.		6
136	Damage Monitoring of External Patch Repairs with Guided Ultrasonic Waves. Strain, 2015, 51, 288-300.	1.4	1
137	Damage Evaluation of Carbon-Fibre Reinforced Polymer Composites Using Electromagnetic Coupled Spiral Inductors. Advanced Composites Letters, 2015, 24, 096369351502400.	1.3	6
138	Finite element analysis of composite T-joints used in wind turbine blades. Plastics, Rubber and Composites, 2015, 44, 87-97.	0.9	18
139	Carbon fibres with ordered graphitic-like aggregate structures from a regenerated cellulose fibre precursor. Composites Science and Technology, 2015, 116, 50-57.	3.8	40
140	Assessment of structural integrity of subsea wellhead system: analytical and numerical study. Frattura Ed Integrita Strutturale, 2015, 9, 97-119.	0.5	5
141	Investigation of the mechanical properties and fracture morphology of glass ceramic fibers. Advanced Manufacturing: Polymer and Composites Science, 2015, 1, 120-127.	0.2	1
142	Environmental impact assessment of aviation emission reduction through the implementation of composite materials. International Journal of Life Cycle Assessment, 2015, 20, 233-243.	2.2	157
143	Compressive fracture of layered composites caused by internalÂinstability. , 2015, , 445-478.		0
144	Analysis of delamination in laminates with angle-ply matrix cracks. , 2015, , 479-512.		1

#	Article	IF	CITATIONS
145	Continuous debonding monitoring of a patch repaired helicopter stabilizer: Damage assessment and analysis. Composite Structures, 2015, 127, 231-244.	3.1	30
146	2D and 3D imaging of fatigue failure mechanisms of 3D woven composites. Composites Part A: Applied Science and Manufacturing, 2015, 77, 37-49.	3.8	100
147	Distributed internal strain measurement during composite manufacturing using optical fibre sensors. Composites Science and Technology, 2015, 120, 49-57.	3.8	45
148	Progressive damage in satin weave carbon/epoxy composites under quasi-static punch-shear loading. Polymer Testing, 2015, 41, 82-91.	2.3	26
149	Healing potential of hybrid materials for structural composites. Composite Structures, 2015, 122, 57-66.	3.1	36
150	Acousto-ultrasonic Structural Health Monitoring of aerospace composite materials., 2015, , 109-115.		1
151	Biodegradable fibre reinforced composites composed of polylactic acid and polybutylene succinate. Plastics, Rubber and Composites, 2014, 43, 82-88.	0.9	22
152	Application of cohesive zone elements in damage analysis of composites: Strength prediction of a single-bolted joint in CFRP laminates. International Journal of Non-Linear Mechanics, 2014, 66, 96-104.	1.4	22
153	Influence of additives on recycled polymer blends. Journal of Thermal Analysis and Calorimetry, 2014, 115, 811-821.	2.0	15
154	Damage Assessment of Composite Structures Using Digital Image Correlation. Applied Composite Materials, 2014, 21, 91-106.	1.3	44
155	A Celebration of the Work of Professor Tony Kelly ScD FRS FREng PhD CBE DL. Applied Composite Materials, 2014, 21, 1-3.	1.3	6
156	Modelling impact damage in composite laminates: A simulation of intra- and inter-laminar cracking. Composite Structures, 2014, 114, 10-19.	3.1	125
157	Recent developments in advanced aircraft aluminium alloys. Materials & Design, 2014, 56, 862-871.	5.1	1,837
158	Interface Cohesive Elements to Model Matrix Crack Evolution in Composite Laminates. Applied Composite Materials, 2014, 21, 57-70.	1.3	26
159	Strength prediction of bolted joints in CFRP composite laminates using cohesive zone elements. Composites Part B: Engineering, 2014, 58, 25-34.	5.9	52
160	Flexural response of nanoclay-modified epoxy polymers. Materials Research Innovations, 2014, 18, S6-280-S6-285.	1.0	9
161	Thermogravimetry analysis of nanosilica-filled epoxy polymer. Materials Research Innovations, 2014, 18, S6-274-S6-279.	1.0	5
162	Evaluation of instantaneous characteristics of guided ultrasonic waves for structural quality and health monitoring. Structural Control and Health Monitoring, 2013, 20, 937-955.	1.9	34

#	Article	IF	Citations
163	An advanced numerical tool to study fatigue crack propagation in aluminium plates repaired with a composite patch. Engineering Fracture Mechanics, 2013, 99, 62-78.	2.0	23
164	Subcritical damage mechanisms of bolted joints in CFRP composite laminates. Composites Part B: Engineering, 2013, 54, 20-27.	5.9	58
165	Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation. Composites Part B: Engineering, 2013, 53, 76-91.	5.9	164
166	Analysis of adhesively bonded repairs in composites: Damage detection and prognosis. Composite Structures, 2013, 95, 500-517.	3.1	125
167	Predicting residual stiffness of cracked composite laminates subjected to multi-axial inplane loading. Journal of Composite Materials, 2013, 47, 2513-2524.	1.2	33
168	Compressive strength of composite laminates with an open hole: Effect of ply blocking. Journal of Composite Materials, 2013, 47, 2503-2512.	1.2	33
169	Structural health monitoring and damage prognosis in composite repaired structures through the excitation of guided ultrasonic waves. Proceedings of SPIE, 2013, , .	0.8	3
170	Plastics recycling: insights into life cycle impact assessment methods. Plastics, Rubber and Composites, 2013, 42, 1-10.	0.9	35
171	Dimensional and Thermal Stabilities of Nanomodified-Epoxy Systems. Applied Mechanics and Materials, 2013, 393, 161-166.	0.2	2
172	Fracture Toughness of Nanomodified-Epoxy Systems. Applied Mechanics and Materials, 2013, 393, 206-211.	0.2	7
173	Non-destructive inspection of adhesively bonded patch repairs using Lamb waves. Plastics, Rubber and Composites, 2012, 41, 61-68.	0.9	26
174	Progressive failure analysis of bolted joints in composite laminates. Plastics, Rubber and Composites, 2012, 41, 209-214.	0.9	10
175	Cure monitoring through time–frequency analysis of guided ultrasonic waves. Plastics, Rubber and Composites, 2012, 41, 180-186.	0.9	24
176	Compressive behaviour of nanoclay modified aerospace grade epoxy polymer. Plastics, Rubber and Composites, 2012, 41, 225-232.	0.9	34
177	Interaction of hybrid pressurised cylindrical structures subjected to blast loading. Plastics, Rubber and Composites, 2012, 41, 69-76.	0.9	3
178	Review of life cycle assessment on polyolefins and related materials. Plastics, Rubber and Composites, 2012, 41, 159-168.	0.9	13
179	Open hole compressive strength of composite laminates and sandwich panels: comparison between Budiansky–Fleck–Soutis model and experiments. Plastics, Rubber and Composites, 2012, 41, 199-208.	0.9	4
180	A comparative study on novelty detection and frequency analysis of Lamb waves for the monitoring of metallic repaired structures., 2012,, 213-218.		1

#	Article	IF	Citations
181	Performance of Glare panels subjected to intense pressure pulse loading. Aeronautical Journal, 2012, 116, 667-679.	1.1	1
182	A finite element analysis of impact damage in composite laminates. Aeronautical Journal, 2012, 116, 1331-1347.	1.1	22
183	Enhanced Composites Integrity Through Structural Health Monitoring. Applied Composite Materials, 2012, 19, 813-829.	1.3	88
184	EDITORIAL The Implementation of Composite Materials in Engineering Structures where Total Safety is of the Essence. Applied Composite Materials, 2012, 19, 767-768.	1.3	2
185	Compressive Properties of Nanoclay/Epoxy Nanocomposites. Procedia Engineering, 2012, 41, 1607-1613.	1.2	59
186	Tensile Properties of Nanosilica/Epoxy Nanocomposites. Procedia Engineering, 2012, 41, 1634-1640.	1.2	54
187	Effect of geometric parameters on the stress distribution in Al 2024â€₹3 singleâ€lap bolted joints. International Journal of Structural Integrity, 2012, 3, 79-93.	1.8	13
188	Multimaterial Arbitrary-Lagrangian-Eulerian Formulation for Blast-Induced Fluid-Structure Interaction in Fiber-Metal Laminates. AIAA Journal, 2012, 50, 1826-1833.	1.5	6
189	Using Digital Image Correlation Techniques for Damage Detection on Adhesively Bonded Composite Repairs. Advanced Composites Letters, 2012, 21, 096369351202100.	1.3	16
190	Modelling delamination onset and growth in pin loaded composite laminates. Composites Science and Technology, 2012, 72, 1096-1101.	3.8	38
191	Blast Resistance and Damage Modelling of Fibre Metal Laminates to Blast Loads. Applied Composite Materials, 2012, 19, 619-636.	1.3	21
192	Effect of clamping force on the delamination onset and growth in bolted composite laminates. Composite Structures, 2012, 94, 548-552.	3.1	20
193	Modelling damage evolution in composite laminates subjected to low velocity impact. Composite Structures, 2012, 94, 2902-2913.	3.1	496
194	Environmental impact assessment of composites containing recycled plastics. Resources, Conservation and Recycling, 2012, 60, 131-139.	5.3	70
195	Influence of Implementation of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect. IOP Conference Series: Materials Science and Engineering, 2011, 26, 012015.	0.3	16
196	Analysis of instantaneous characteristics of guided ultrasonic waves in metallic structures with aluminium repair patches. , 2011 , , .		2
197	Modelling the structural response of GLARE panels to blast load. Composite Structures, 2011, 94, 267-276.	3.1	49
198	Characterisation of thermo-mechanical properties of MgO–Al2O3–SiO2 glass ceramic with different heat treatment temperatures. Journal of Materials Science, 2011, 46, 5822-5829.	1.7	33

#	Article	IF	CITATIONS
199	A Graphical Method Predicting the Compressive Strength of Toughened Unidirectional Composite Laminates. Applied Composite Materials, 2011, 18, 65-83.	1.3	35
200	Residual Stiffness of Cracked Cross-Ply Composite Laminates Under Multi-Axial In-plane Loading. Applied Composite Materials, 2011, 18, 31-43.	1.3	8
201	Studying the Tensile Behaviour of GLARE Laminates: A Finite Element Modelling Approach. Applied Composite Materials, 2011, 18, 271-282.	1.3	53
202	ACM Special Issue: ICCM-17: Deformation and Fracture of Composites. Applied Composite Materials, 2011, 18, 1-1.	1.3	3
203	A qualitative comparison of stresses at aircraft bolted joint holes under initial clamping force. Procedia Engineering, 2011, 10, 3-8.	1.2	2
204	A review on composite materials based on recycled thermoplastics and glass fibres. Plastics, Rubber and Composites, 2011, 40, 1-10.	0.9	29
205	Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment. EXPRESS Polymer Letters, 2011, 5, 209-217.	1.1	58
206	A finite element stress analysis of aircraft bolted joints loaded in tension. Aeronautical Journal, 2010, 114, 315-320.	1.1	27
207	Effect of silica nanoparticles on compressive properties of an epoxy polymer. Journal of Materials Science, 2010, 45, 5973-5983.	1.7	63
208	Structural health monitoring techniques for aircraft composite structures. Progress in Aerospace Sciences, 2010, 46, 342-352.	6.3	455
209	Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading. Composite Structures, 2010, 92, 295-305.	3.1	181
210	Improved Compressive Properties of a Unidirectional Cfrp Laminate Using Nanosilica Particles. Advanced Composites Letters, 2010, 19, 096369351001900.	1.3	15
211	A Fluid-Structure Interaction Model of Pressurised Composite Structures Subjected to Blast Loading. Advanced Composites Letters, 2010, 19, 096369351001900.	1.3	0
212	Scaling Effects in Notched Composites. Journal of Composite Materials, 2010, 44, 195-210.	1.2	130
213	Identification of interfacial and interphasal failure in composites of plasma polymer coated fibres. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1047-1055.	3.8	10
214	Modelling open hole compressive strength of composite laminates tested in hot wet conditions. Plastics, Rubber and Composites, 2009, 38, 55-60.	0.9	20
215	Recent advances in building with composites. Plastics, Rubber and Composites, 2009, 38, 359-366.	0.9	22
216	Crushing Morphology of Composite Sandwich Panels Under Edgewise Compression. Journal of Composite Materials, 2009, 43, 1035-1049.	1.2	0

#	Article	IF	Citations
217	Estimating clamping pressure distribution and stiffness in aircraft bolted joints by finite-element analysis. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2009, 223, 863-871.	0.7	42
218	Measuring the notched compressive strength of composite laminates: Specimen size effects. Composites Science and Technology, 2008, 68, 2359-2366.	3.8	119
219	Scaling effects in notched carbon fibre/epoxy composites loaded in compression. Journal of Materials Science, 2008, 43, 6593-6598.	1.7	42
220	Optimisation of interfacial properties for tensile strength by plasma polymerisation. Composites Science and Technology, 2008, 68, 2302-2309.	3.8	17
221	Matrix cracking in polymeric composites laminates: Modelling and experiments. Composites Science and Technology, 2008, 68, 2310-2317.	3.8	48
222	Damage tolerance analysis of NCF composite sandwich panels. Composites Science and Technology, 2008, 68, 2635-2645.	3.8	35
223	Active sensing of impact damage in composite sandwich panels by low frequency Lamb waves. Aeronautical Journal, 2008, 112, 279-283.	1.1	5
224	Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI). Springer Proceedings in Physics, 2008, , 275-286.	0.1	2
225	The localized low-velocity impact response of aluminium honeycombs and sandwich panels for occupant head protection: experimental characterization and analytical modelling. International Journal of Crashworthiness, 2007, 12, 549-558.	1.1	16
226	Static Compressive Strength of Unidirectional Carbon Fibre-Epoxy Laminate. Key Engineering Materials, 2007, 334-335, 357-360.	0.4	1
227	Crushing energy absorption of GFRP sandwich panels and corresponding monolithic laminates. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1149-1158.	3.8	19
228	Piezoelectric transducer arrangement for the inspection of large composite structures. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1121-1130.	3.8	74
229	Stiffness and fracture analysis of laminated composites with off-axis ply matrix cracking. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1262-1269.	3.8	52
230	A study on the compressive strength of thick carbon fibre–epoxy laminates. Composites Science and Technology, 2007, 67, 2015-2026.	3.8	168
231	A fibre microbuckling model for predicting the notched compressive strength of composite sandwich panels. Mechanics of Composite Materials, 2007, 43, 51-58.	0.9	7
232	Prediction of crushing morphology of GRP composite sandwich panels under edgewise compression. Composites Part B: Engineering, 2007, 38, 914-923.	5.9	15
233	Fracture of layered composites by internal fibre instability: effect of interfacial adhesion. Aeronautical Journal, 2006, 110, 185-195.	1.1	23
234	Modelling off-axis ply matrix cracking in continuous fibre-reinforced polymer matrix composite laminates. Journal of Materials Science, 2006, 41, 6789-6799.	1.7	24

#	Article	IF	CITATIONS
235	Experimental research on strain monitoring in composite plates using embedded SMA wires. Smart Materials and Structures, 2006, 15, 1047-1053.	1.8	25
236	Lamb waves for the non-destructive inspection of monolithic and sandwich composite beams. Composites Part A: Applied Science and Manufacturing, 2005, 36, 189-195.	3.8	60
237	Thickness effect on the compressive strength of T800/924C carbon fibre–epoxy laminates. Composites Part A: Applied Science and Manufacturing, 2005, 36, 213-227.	3.8	65
238	Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences, 2005, 41, 143-151.	6.3	897
239	Carbon fiber reinforced plastics in aircraft construction. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2005, 412, 171-176.	2.6	617
240	Analysis of composite laminates with intra- and interlaminar damage. Progress in Aerospace Sciences, 2005, 41, 152-173.	6.3	110
241	Non-destructive inspection of sandwich and repaired composite laminated structures. Composites Science and Technology, 2005, 65, 2059-2067.	3.8	80
242	Prediction of Impact-Induced Fibre Damage in Circular Composite Plates. Applied Composite Materials, 2005, 12, 109-131.	1.3	20
243	Modelling of low velocity impact damage in Laminated Composites. Journal of Mechanical Science and Technology, 2005, 19, 947-957.	0.7	7
244	Thickness effect on the compressive strength of T800/924C carbon fibre–epoxy laminates. Composites Part A: Applied Science and Manufacturing, 2005, 36, 213-227.	3.8	26
245	Predicting fracture of laminated composites. , 2005, , 278-302.		3
246	Compressive strength of laminated composites: on application of the continuum fracture theory. WIT Transactions on State-of-the-art in Science and Engineering, 2005, , 1-24.	0.0	2
247	Modelling the compressive response behaviour of monolithic and sandwich composite structures. , 2005, , 303-318.		0
248	Modelling damage in laminate composites. , 2005, , 217-258.		0
249	Predicting the ultimate load of a CFRP wingbox. Composites Part A: Applied Science and Manufacturing, 2004, 35, 895-903.	3.8	2
250	Size Effect on the Compressive Strength of T300/924C Carbon Fiber-Epoxy Laminates in Considering Influence of an Anti-buckling Device., 2004,, 83-87.		0
251	Analysis of matrix crack-induced delamination in composite laminates under static and fatigue loading., 2003,, 470-503.		0
252	<title>In-service health monitoring of composite structures using Lamb waves</title> ., 2003,,.		1

#	Article	IF	Citations
253	Strain Energy Release Rate for Crack Tip Delaminations in Angle-Ply Continuous Fibre Reinforced Composite Laminates. European Structural Integrity Society, 2003, , 455-463.	0.1	0
254	Strength Analysis of Adhesively Bonded Repairs. , 2003, , 141-172.		4
255	Delamination Detection in Laminated Composites Using Lamb Waves. , 2003, , 109-126.		0
256	Real-time nondestructive evaluation of fiber composite laminates using low-frequency Lamb waves. Journal of the Acoustical Society of America, 2002, 111, 2026.	0.5	110
257	Investigation of Vibration Characteristics of Carbon/Epoxy Propeller Shaft for Vehicle. Science and Engineering of Composite Materials, 2002, 10, 11-18.	0.6	0
258	Repair of Concrete Elements Using CFRP: Parametrical Study and Evaluation of Dynamic Properties. Science and Engineering of Composite Materials, 2002, 10, 313-332.	0.6	0
259	Compressive response of notched, woven fabric, face sheet honeycomb sandwich panels. Plastics, Rubber and Composites, 2002, 31, 392-397.	0.9	12
260	Size effect on compressive strength of T300/924C carbon fibre-epoxy laminates. Plastics, Rubber and Composites, 2002, 31, 364-370.	0.9	14
261	Damage detection in composite materials using Lamb wave methods. Smart Materials and Structures, 2002, 11, 269-278.	1.8	599
262	Full Scale Structural Experimental Investigation of an E-Glass/Epoxy Composite Wind Turbine Blade. Advanced Composites Letters, 2002, 11, 096369350201100.	1.3	2
263	Damage detection in composite materials using frequency response methods. Composites Part B: Engineering, 2002, 33, 87-95.	5.9	218
264	Analysis of local delaminations in composite laminates with angle-ply matrix cracks. International Journal of Solids and Structures, 2002, 39, 1515-1537.	1.3	60
265	Stiffened Composite Panels with a Stress Concentrator Under in-Plane Compression. International Applied Mechanics, 2002, 38, 240-252.	0.2	6
266	Title is missing!. International Applied Mechanics, 2002, 38, 641-657.	0.2	50
267	The Effect of Specimen Size on the Compressive Strength of Carbon Fibre-epoxy Laminates. , 2002, , 153-162.		0
268	Delamination growth and residual properties of cracked orthotropic laminates under tensile loading. Journal of Thermoplastic Composite Materials, 2002, 15, 13-22.	2.6	4
269	Effect of impact damage on the compressive response of composite laminates. Composites Part A: Applied Science and Manufacturing, 2001, 32, 1263-1270.	3.8	88
270	Predicting fracture of layered composites caused by internal instability. Composites Part A: Applied Science and Manufacturing, 2001, 32, 1243-1253.	3.8	26

#	Article	IF	Citations
271	Structural health monitoring in composite materials using frequency response methods. , 2001, 4336, 1.		21
272	Damage mechanisms in angle-ply composite laminates under in-plane tensile loading., 2001,,.		4
273	Compressive behaviour of thin-skin stiffened composite panels with a stress raiser. Composites Part B: Engineering, 2001, 32, 697-709.	5.9	20
274	A 3-D stability theory applied to layered rocks undergoing finite deformations in biaxial compression. European Journal of Mechanics, A/Solids, 2001, 20, 139-153.	2.1	24
275	A new approach for solving mixed boundary value problems along holes in orthotropic plates. International Journal of Solids and Structures, 2001, 38, 143-159.	1.3	11
276	Compressive fracture of non-linear composites undergoing large deformations. International Journal of Solids and Structures, 2001, 38, 3759-3770.	1.3	15
277	Strain Energy Release Rate for Off-Axis Ply Cracking in Laminated Composites. International Journal of Fracture, 2001, 112, 3-8.	1.1	17
278	Title is missing!. Applied Composite Materials, 2001, 8, 307-326.	1.3	21
279	Predicting the compressive strength of monolithic and sandwich composite structures failing by fibre microbuckling. , 2001, , .		0
280	Modelling of intra-and interlaminar fracture in composite laminates loaded in tension. , 2001, , 279-282.		0
281	A Structural Health Monitoring System for Laminated Composites. , 2001, , .		10
282	Delamination Detection in Composite Laminates from Variations of Their Modal Characteristics. Journal of Low Frequency Noise Vibration and Active Control, 2000, 19, 27-33.	1.3	67
283	Joining. , 2000, , 175-193.		3
284	Critical strains in layered composites with interfacial defects loaded in uniaxial or biaxial compression. Plastics, Rubber and Composites, 2000, 29, 489-495.	0.9	15
285	Modelling stiffness degradation due to matrix cracking in angleply composite laminates. Plastics, Rubber and Composites, 2000, 29, 482-488.	0.9	27
286	Interlaminar stresses and free-edge effects. , 2000, , 123-138.		0
287	Fracture and fracture mechanics. , 2000, , 139-157.		0
288	Delamination. , 2000, , 158-174.		0

#	Article	IF	Citations
289	Apparent strength scaling in continuous fiber composite laminates. Composites Science and Technology, 2000, 60, 283-299.	3.8	47
290	Compression testing of pultruded carbon fibre-epoxy cylindrical rods. Journal of Materials Science, 2000, 35, 3441-3446.	1.7	16
291	Prediction of the Compresion-After-Impact Strength of Thin-Skin Stiffened Composite Panels. Advanced Composites Letters, 2000, 9, 096369350000900.	1.3	3
292	Scaling effects in laminated composites. , 2000, , 293-313.		0
293	Failure Analysis of Scarf-Patch-Repaired Carbon Fiber/Epoxy Laminates Under Compression. AIAA Journal, 2000, 38, 737-740.	1.5	31
294	Strength Prediction of Fiber Reinforced Plastics with a Hole Under Compression-Tension. AIAA Journal, 2000, 38, 110-114.	1.5	11
295	Health monitoring of composites using Lamb waves generated by piezoelectric devices. Plastics, Rubber and Composites, 2000, 29, 475-481.	0.9	60
296	A method for predicting the fracture toughness of CFRP laminates failing by fibre microbuckling. Composites Part A: Applied Science and Manufacturing, 2000, 31, 733-740.	3.8	77
297	The effect of delaminations induced by transverse cracks and splits on stiffness properties of composite laminates. Composites Part A: Applied Science and Manufacturing, 2000, 31, 107-119.	3.8	80
298	Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting. Composites Part A: Applied Science and Manufacturing, 2000, 31, 335-351.	3.8	116
299	Predicting the compressive engineering performance of carbon fibre-reinforced plastics. Composites Part A: Applied Science and Manufacturing, 2000, 31, 531-536.	3.8	60
300	Strength prediction of patch-repaired CFRP laminates loaded in compression. Composites Science and Technology, 2000, 60, 1103-1114.	3.8	141
301	Finite Element Modelling of Composite Materials and Structures. , 2000, , .		48
302	Analysis of Fatigue Damage Mechanisms and Residual Properties of Polymer Matrix Composites. , 2000, , .		0
303	Application of the Rapid Frequency Sweep Technique for Delamination Detection in Composite Laminates. Advanced Composites Letters, 1999, 8, 096369359900800.	1.3	3
304	A Study of Matrix Crack Tip Delaminations and their Influence on Composite Laminate Stiffness. Advanced Composites Letters, 1999, 8, 096369359900800.	1.3	13
305	Application of the Equivalent Constraint Model to Investigate Stiffness Properties of Transversally Cracked and Split Frp Laminates. Advanced Composites Letters, 1999, 8, 096369359900800.	1.3	8
306	Compressive behaviour of CFRP laminates repaired with adhesively bonded external patches. Composite Structures, 1999, 45, 289-301.	3.1	125

#	Article	IF	Citations
307	Compressive failure of $0\hat{A}^\circ$ unidirectional carbon-fibre-reinforced plastic (CFRP) laminates by fibre microbuckling. Composites Science and Technology, 1999, 59, 1451-1455.	3.8	138
308	DELAMINATION DETECTION IN COMPOSITE LAMINATES FROM VARIATIONS OF THEIR MODAL CHARACTERISTICS. Journal of Sound and Vibration, 1999, 228, 1-9.	2.1	104
309	Effect of off-axis ply orientation on $0\hat{A}^{\circ}$ -fibre microbuckling. Composites Part A: Applied Science and Manufacturing, 1999, 30, 1197-1207.	3.8	7 5
310	On the failure criteria for unidirectional carbon fibre composite materials under compression. International Applied Mechanics, 1999, 35, 462-468.	0.2	6
311	Factors which may increase stresses at the pin-bone interface in external fixation: a finite element analysis study. African Journal of Medicine and Medical Sciences, 1999, 28, 13-5.	0.2	3
312	Stress Distributions around Holes in Composite Laminates Subjected to Biaxial Loading. Applied Composite Materials, 1998, 5, 365-378.	1.3	14
313	Strength prediction of CFRP plates with a hole under biaxial compression-tension. , 1998, , .		3
314	A 3-D failure analysis of scarf patch repaired CFRP plates. , 1998, , .		5
315	Evaluation of Crush Energy Absorption of Woven CFRP Laminates. Advanced Composites Letters, 1998, 7, 096369359800700.	1.3	1
316	Moisture and Temperature Effects of the Compressive Failure of CFRP Unidirectional Laminates. Journal of Composite Materials, 1997, 31, 832-849.	1.2	86
317	A method for the production of carpet plots for notched compression strength of carbon fibre reinforced plastic multidirectional laminates. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1997, 211, 251-261.	0.7	8
318	Design and performance of bonded patch repairs of composite structures. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1997, 211, 263-271.	0.7	77
319	Tensile behaviour of Bolted Joints in Low Temperature Cure CFRP Woven Laminates. Advanced Composites Letters, 1997, 6, 096369359700600.	1.3	3
320	Interlaminar stresses in composite laminates with a circular hole. Composite Structures, 1997, 37, 223-232.	3.1	58
321	Compressive Strength of Unidirectional Composites: Measurement and Prediction. , 1997, , 168-176.		10
322	Approximate Biaxial Stress Solution for Orthotropic Open-Hole Composite Laminates. Advanced Composites Letters, 1996, 5, 096369359600500.	1.3	1
323	Prediction of the post-impact compressive strength of cfrp laminated composites. Composites Science and Technology, 1996, 56, 677-684.	3.8	197
324	Influence of shear properties and fibre imperfections on the compressive behaviour of GFRP laminates. Applied Composite Materials, 1996, 2, 327-342.	1.3	23

#	Article	IF	Citations
325	Failure of Notched CFRP Laminates Due to Fibre Microbuckling: A Topical Review. Journal of the Mechanical Behavior of Materials, 1996, 6, 309-330.	0.7	28
326	An Investigation of the Bending Stiffness of and the Plane Stresses Generated by a Flanged External Fixator Pin. Journal of Orthopaedic Trauma, 1995, 9, 83-88.	0.7	8
327	External fixation of upper limb fractures: the effect of pin offset on fixator stability. Biomaterials, 1995, 16, 263-264.	5.7	3
328	Post-impact compressive behaviour of low temperature curing woven CFRP laminates. Composites, 1995, 26, 661-667.	0.9	31
329	Monitoring fracture healing with strain gauges: the effect on strain values of strain gauge location on the pin circumference. Injury, 1995, 26, 181-182.	0.7	1
330	A Property Degradation Model for Fibre Microbuckling Failure in Composite Laminates. Science and Engineering of Composite Materials, 1995, 4, 27-34.	0.6	3
331	A Finite Element Failure Model for Notched Laminated Composites Loaded in Compression. Advanced Composites Letters, 1994, 3, 096369359400300.	1.3	0
332	Damage tolerance of open-hole CFRP laminates loaded in compression. Composites Part B: Engineering, 1994, 4, 317-327.	0.6	35
333	Comparison of the stresses generated at the pin-bone interface by standard and conical external fixator pins. Biomaterials, 1994, 15, 471-473.	5.7	8
334	Strain energy release rate associated with local delamination in cracked composite laminates. Composites, 1994, 25, 851-862.	0.9	47
335	Effects of matrix cracking and hygrothermal stresses on the strain energy release rate for edge delamination in composite laminates. Composites, 1994, 25, 27-35.	0.9	23
336	The effect of fibre length on fracture toughness and notched strength of short carbon fibre/epoxy composites. Composites, 1994, 25, 407-413.	0.9	27
337	Pin-hole shear stresses generated by conical and standard external fixation pins. Biomaterials, 1993, 14, 876-878.	5.7	7
338	Bending stiffness of conical and standard external fixator pins. Biomaterials, 1993, 14, 1036-1038.	5.7	4
339	A finite element analysis of the effect of pin distribution on the rigidity of a unilateral external fixation system. Injury, 1993, 24, 525-527.	0.7	24
340	Analysis of Local Delamination in A Cracked Composite Laminate Loaded in Tension. Advanced Composites Letters, 1993, 2, 096369359300200.	1.3	0
341	Analysis of multiple matrix cracking in $[\hat{A}\pm\hat{I},m/90n]$ s composite laminates. Part 1: In-plane stiffness properties. Composites, 1992, 23, 291-298.	0.9	144
342	Analysis of multiple matrix cracking in $[\hat{A}\pm\hat{l},m/90n]$ s composite laminates. Part 2: Development of transverse ply cracks. Composites, 1992, 23, 299-304.	0.9	85

#	Article	IF	CITATIONS
343	Effects of Hole Size and Stacking Sequence on the Compressive strength of Cfrp Laminates. Advanced Composites Letters, 1992, 1, 096369359200100.	1.3	0
344	Hole-hole interaction in carbon fibre/epoxy laminates under uniaxial compression. Composites, 1991, 22, 31-38.	0.9	38
345	Compression fatigue behaviour of notched carbon fibre-epoxy laminates. International Journal of Fatigue, 1991, 13, 303-312.	2.8	38
346	Measurement of the static compressive strength of carbon-fibre/epoxy laminates. Composites Science and Technology, 1991, 42, 373-392.	3.8	96
347	Failure Prediction Technique for Compression Loaded Carbon Fibre-Epoxy Laminate with Open Holes. Journal of Composite Materials, 1991, 25, 1476-1498.	1.2	189
348	Static Compression Failure of Carbon Fibre T800/924C Composite Plate with a Single Hole. Journal of Composite Materials, 1990, 24, 536-558.	1.2	157
349	Structural Health Monitoring of Composite Scarf Repairs with Guided Waves. Key Engineering Materials, 0, 518, 328-337.	0.4	6
350	Fibre Misalignment Measurement of Nanomodified-Unidirectional Carbon Fibre Laminates. Applied Mechanics and Materials, 0, 393, 200-205.	0.2	2
351	Flexural Behaviour of Unreinforced and Z-Fibre Reinforced 3D Carbon/Epoxy Composites. Applied Composite Materials, 0, , 1.	1.3	1
352	Monitoring Manufacturing of Composites Using Embedded Distributed Optical Fibre Sensors. , 0, , .		3
353	Acoustic Emission of 3D Angle Interlock Glass Fibre Composites. , 0, , .		0
354	Modeling Multilayer Damage in Composite Laminates Under Static and Fatigue Loading., 0,, 301-301-14.		0