
Michael W Ronellenfitsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3066960/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The PI3K/Akt/mTOR pathway as a preventive target in melanoma brain metastasis. Neuro-Oncology, 2022, 24, 213-225.	1.2	36
2	Short-term fasting in glioma patients: analysis of diet diaries and metabolic parameters of the ERGO2 trial. European Journal of Nutrition, 2022, 61, 477-487.	3.9	16
3	Immune profile and radiological characteristics of progressive multifocal leukoencephalopathy. European Journal of Neurology, 2022, 29, 543-554.	3.3	1
4	Sex-Dependent Analysis of Temozolomide-Induced Myelosuppression and Effects on Survival in a Large Real-life Cohort of Patients With Glioma. Neurology, 2022, 98, .	1.1	2
5	Pulmonary Resection after Radiosurgery and Neoadjuvant Immunochemotherapy for NSCLC Patients with Synchronous Brain Metastasis—A Case Series of Three Patients. Current Oncology, 2022, 29, 2225-2239.	2.2	2
6	Linking epigenetic signature and metabolic phenotype in <i>IDH</i> mutant and <i>IDH</i> wildtype diffuse glioma. Neuropathology and Applied Neurobiology, 2021, 47, 379-393.	3.2	4
7	Influence of VEGF-A, VEGFR-1-3, and neuropilin 1-2 on progression-free: and overall survival in WHO grade II and III meningioma patients. Journal of Molecular Histology, 2021, 52, 233-243.	2.2	8
8	A 25-year retrospective, single center analysis of 343 WHO grade II/III glioma patients: implications for grading and temozolomide therapy. Journal of Cancer Research and Clinical Oncology, 2021, 147, 2373-2383.	2.5	2
9	Single-shot bevacizumab for cerebral radiation injury. BMC Neurology, 2021, 21, 77.	1.8	8
10	Meningioma Surgery in Patients ≥70 Years of Age: Clinical Outcome and Validation of the SKALE Score. Journal of Clinical Medicine, 2021, 10, 1820.	2.4	5
11	Clinical Outcome and Risk Factors of Red Blood Cell Transfusion in Patients Undergoing Elective Primary Meningioma Resection. Cancers, 2021, 13, 3601.	3.7	8
12	Activating transcription factor 4 mediates adaptation of human glioblastoma cells to hypoxia and temozolomide. Scientific Reports, 2021, 11, 14161.	3.3	11
13	Immune Checkpoint Inhibitor-Induced Cerebral Pseudoprogression: Patterns and Categorization. Frontiers in Immunology, 2021, 12, 798811.	4.8	9
14	Activation of Epidermal Growth Factor Receptor Sensitizes Glioblastoma Cells to Hypoxia-Induced Cell Death. Cancers, 2020, 12, 2144.	3.7	6
15	Cetuximab-Mediated Protection from Hypoxia- Induced Cell Death: Implications for Therapy Sequence in Colorectal Cancer. Cancers, 2020, 12, 3050.	3.7	1
16	Increased occurrence of status epilepticus in patients with brain metastases and checkpoint inhibition. Oncolmmunology, 2020, 9, 1851517.	4.6	12
17	Serine-dependent redox homeostasis regulates glioblastoma cell survival. British Journal of Cancer, 2020, 122, 1391-1398.	6.4	41
18	ERGO2: A Prospective, Randomized Trial of Calorie-Restricted Ketogenic Diet and Fasting in Addition to Reirradiation for Malignant Glioma. International Journal of Radiation Oncology Biology Physics, 2020, 108, 987-995.	0.8	46

MICHAEL W RONELLENFITSCH

#	Article	IF	CITATIONS
19	Targetable ERBB2 mutations identified in neurofibroma/schwannoma hybrid nerve sheath tumors. Journal of Clinical Investigation, 2020, 130, 2488-2495.	8.2	23
20	AMPK activation protects astrocytes from hypoxia‑induced cell death. International Journal of Molecular Medicine, 2020, 45, 1385-1396.	4.0	9
21	Adrenal Insufficiency in Patients with Corticosteroid-Refractory Cerebral Radiation Necrosis Treated with Bevacizumab. Journal of Clinical Medicine, 2019, 8, 1608.	2.4	2
22	Treatment of refractory and superrefractory status epilepticus with topiramate: A cohort study of 106 patients and a review of the literature. Epilepsia, 2019, 60, 2448-2458.	5.1	30
23	Second Generation mTOR Inhibitors as a Double-Edged Sword in Malignant Glioma Treatment. International Journal of Molecular Sciences, 2019, 20, 4474.	4.1	19
24	Lack of H3K27 trimethylation is associated with 1p/19q codeletion in diffuse gliomas. Acta Neuropathologica, 2019, 138, 331-334.	7.7	22
25	The physiological mTOR complex 1 inhibitor DDIT4 mediates therapy resistance in glioblastoma. British Journal of Cancer, 2019, 120, 481-487.	6.4	45
26	Multicenter cohort study on the use of topiramate in the treatment of refractory and super-refractory status epilepticus. Epilepsy and Behavior, 2019, 101, 106800.	1.7	0
27	Regorafenib CSF Penetration, Efficacy, and MRI Patterns in Recurrent Malignant Glioma Patients. Journal of Clinical Medicine, 2019, 8, 2031.	2.4	23
28	Disruption of peroxisome proliferator–activated receptor γ coactivator (PGC)-1α reverts key features of the neoplastic phenotype of glioma cells. Journal of Biological Chemistry, 2019, 294, 3037-3050.	3.4	18
29	EGFR and mTOR as therapeutic targets in glioblastoma. Oncotarget, 2019, 10, 4721-4723.	1.8	7
30	Quality of life in the GLARIUS trial randomizing bevacizumab/irinotecan versus temozolomide in newly diagnosed, MGMT-nonmethylated glioblastoma. Neuro-Oncology, 2018, 20, 975-985.	1.2	11
31	<i>CASP9</i> germline mutation in a family with multiple brain tumors. Brain Pathology, 2018, 28, 94-102.	4.1	11
32	Doxycycline Impairs Mitochondrial Function and Protects Human Glioma Cells from Hypoxia-Induced Cell Death: Implications of Using Tet-Inducible Systems. International Journal of Molecular Sciences, 2018, 19, 1504.	4.1	25
33	Akt and mTORC1 signaling as predictive biomarkers for the EGFR antibody nimotuzumab in glioblastoma. Acta Neuropathologica Communications, 2018, 6, 81.	5.2	22
34	Rescue of 2-Deoxyglucose Side Effects by Ketogenic Diet. International Journal of Molecular Sciences, 2018, 19, 2462.	4.1	21
35	Personalized translational epilepsy research — Novel approaches and future perspectives. Epilepsy and Behavior, 2017, 76, 7-12.	1.7	14
36	Personalized translational epilepsy research — Novel approaches and future perspectives. Epilepsy and Behavior, 2017, 76, 13-18.	1.7	26

3

MICHAEL W RONELLENFITSCH

#	Article	IF	CITATIONS
37	Bevacizumab as a last-line treatment for glioblastoma following failure of radiotherapy, temozolomide and lomustine. Oncology Letters, 2017, 14, 1141-1146.	1.8	58
38	Mammalian target of rapamycin complex 1 activation sensitizes human glioma cells to hypoxia-induced cell death. Brain, 2017, 140, 2623-2638.	7.6	30
39	Effects of soluble CPE on glioma cell migration are associated with mTOR activation and enhanced glucose flux. Oncotarget, 2017, 8, 67567-67591.	1.8	11
40	Dabrafenib in patients with recurrent, BRAF V600E mutated malignant glioma and leptomeningeal disease. Oncology Reports, 2017, 38, 3291-3296.	2.6	46
41	Activation of AMP-activated kinase modulates sensitivity of glioma cells against epidermal growth factor receptor inhibition. International Journal of Oncology, 2016, 49, 173-180.	3.3	8
42	Bevacizumab Plus Irinotecan Versus Temozolomide in Newly Diagnosed O ⁶ -Methylguanine–DNA Methyltransferase Nonmethylated Glioblastoma: The Randomized GLARIUS Trial. Journal of Clinical Oncology, 2016, 34, 1611-1619.	1.6	151
43	Myoinositol as a Biomarker in Recurrent Glioblastoma Treated with Bevacizumab: A 1H-Magnetic Resonance Spectroscopy Study. PLoS ONE, 2016, 11, e0168113.	2.5	19
44	Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget, 2016, 7, 20016-20032.	1.8	32
45	Immunohistochemical Assessment of Phosphorylated mTORC1-Pathway Proteins in Human Brain Tumors. PLoS ONE, 2015, 10, e0127123.	2.5	15
46	ANGI-02PERIOPERATIVE CEREBRAL ISCHEMIA PROMOTE INFILTRATIVE RECURRENCE IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v41.2-v41.	1.2	0
47	Perioperative cerebral ischemia promote infiltrative recurrence in glioblastoma. Oncotarget, 2015, 6, 14537-14544.	1.8	27
48	Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases. Oncotarget, 2015, 6, 40836-40849.	1.8	106
49	mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy. Proceedings of the United States of America, 2014, 111, 409-414.	7.1	152
50	Sustained focal antitumor activity of bevacizumab in recurrent glioblastoma. Neurology, 2014, 83, 227-234.	1.1	28
51	Hypoxia Enhances the Antiglioma Cytotoxicity of B10, a Glycosylated Derivative of Betulinic Acid. PLoS ONE, 2014, 9, e94921.	2.5	13
52	Tumor necrosis factor receptor superfamily member 9 is upregulated in the endothelium and tumor cells in melanoma brain metastasis. Neuroimmunology and Neuroinflammation, 2014, 1, 135.	1.4	0
53	Synthesis of cytochrome c oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death. Oncogene, 2012, 31, 3764-3776.	5.9	52
54	Epidermal growth factor receptor and mammalian target of rapamycin as therapeutic targets in malignant glioma: current clinical status and perspectives. Targeted Oncology, 2010, 5, 183-191.	3.6	23

#	Article	IF	CITATIONS
55	The Pan-Bcl-2 Inhibitor (â^')-Gossypol Triggers Autophagic Cell Death in Malignant Glioma. Molecular Cancer Research, 2010, 8, 1002-1016.	3.4	169
56	Bevacizumab-Induced Diffusion Restriction in Patients With Glioma: Tumor Progression or Surrogate Marker of Hypoxia?. Journal of Clinical Oncology, 2010, 28, e477-e477.	1.6	21
57	Antagonism of the mammalian target of rapamycin selectively mediates metabolic effects of epidermal growth factor receptor inhibition and protects human malignant glioma cells from hypoxia-induced cell death. Brain, 2009, 132, 1509-1522.	7.6	42