
Jacquelyn A Hank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3066824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved Outcome in Children With Newly Diagnosed High-Risk Neuroblastoma Treated With Chemoimmunotherapy: Updated Results of a Phase II Study Using hu14.18K322A. Journal of Clinical Oncology, 2022, 40, 335-344.	1.6	46
2	Outcomes Following GD2-Directed Postconsolidation Therapy for Neuroblastoma After Cessation of Random Assignment on ANBL0032: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2022, 40, 4107-4118.	1.6	11
3	Long-Term Follow-up of a Phase III Study of ch14.18 (Dinutuximab) + Cytokine Immunotherapy in Children with High-Risk Neuroblastoma: COG Study ANBL0032. Clinical Cancer Research, 2021, 27, 2179-2189.	7.0	95
4	Depth of tumor implantation affects response to in situ vaccination in a syngeneic murine melanoma model. , 2021, 9, e002107.		8
5	Combination of radiation therapy, bempegaldesleukin, and checkpoint blockade eradicates advanced solid tumors and metastases in mice. , 2021, 9, e002715.		26
6	Radiation Augments the Local Anti-Tumor Effect of In Situ Vaccine With CpG-Oligodeoxynucleotides and Anti-OX40 in Immunologically Cold Tumor Models. Frontiers in Immunology, 2021, 12, 763888.	4.8	9
7	A Phase 1 and pharmacokinetic study evaluating daily or weekly schedules of the humanized anti-GD2 antibody hu14.18K322A in recurrent/refractory solid tumors. MAbs, 2020, 12, 1773751.	5.2	4
8	Outcome-Related Signatures Identified by Whole Transcriptome Sequencing of Resectable Stage III/IV Melanoma Evaluated after Starting Hu14.18-IL2. Clinical Cancer Research, 2020, 26, 3296-3306.	7.0	12
9	lrinotecan, Temozolomide, and Dinutuximab With GM-CSF in Children With Refractory or Relapsed Neuroblastoma: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2020, 38, 2160-2169.	1.6	98
10	A Phase II Trial of Hu14.18K322A in Combination with Induction Chemotherapy in Children with Newly Diagnosed High-Risk Neuroblastoma. Clinical Cancer Research, 2019, 25, 6320-6328.	7.0	61
11	Follicular lymphoma patients with KIR2DL2 and KIR3DL1 and their ligands (HLA-C1 and HLA-Bw4) show improved outcome when receiving rituximab. , 2019, 7, 70.		19
12	Combined innate and adaptive immunotherapy overcomes resistance of immunologically cold syngeneic murine neuroblastoma to checkpoint inhibition. , 2019, 7, 344.		45
13	Human and murine IL2 receptors differentially respond to the human-IL2 component of immunocytokines. Oncolmmunology, 2019, 8, e1238538.	4.6	8
14	Neuroblastoma Patients' KIR and KIR-Ligand Genotypes Influence Clinical Outcome for Dinutuximab-based Immunotherapy: A Report from the Children's Oncology Group. Clinical Cancer Research, 2018, 24, 189-196.	7.0	45
15	Pilot trial of the hu14.18-IL2 immunocytokine in patients with completely resectable recurrent stage III or stage IV melanoma. Cancer Immunology, Immunotherapy, 2018, 67, 1647-1658.	4.2	25
16	Tumor-Specific Inhibition of <i>In Situ</i> Vaccination by Distant Untreated Tumor Sites. Cancer Immunology Research, 2018, 6, 825-834.	3.4	61
17	A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody (hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with Recurrent/Refractory Neuroblastoma. Clinical Cancer Research, 2017, 23, 6441-6449.	7.0	116
18	FCGR Polymorphisms Influence Response to IL2 in Metastatic Renal Cell Carcinoma. Clinical Cancer Research, 2017, 23, 2159-2168	7.0	12

JACQUELYN A HANK

#	Article	IF	CITATIONS
19	HLA-Bw4-I-80 Isoform Differentially Influences Clinical Outcome As Compared to HLA-Bw4-T-80 and HLA-A-Bw4 Isoforms in Rituximab or Dinutuximab-Based Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 675.	4.8	18
20	<i>In Situ</i> Tumor Vaccination by Combining Local Radiation and Tumor-Specific Antibody or Immunocytokine Treatments. Cancer Research, 2016, 76, 3929-3941.	0.9	120
21	Killer immunoglobulin-like receptor (KIR) and KIR–ligand genotype do not correlate with clinical outcome of renal cell carcinoma patients receiving high-dose IL2. Cancer Immunology, Immunotherapy, 2016, 65, 1523-1532.	4.2	5
22	Human NK cells maintain licensing status and are subject to killer immunoglobulin-like receptor (KIR) and KIR-ligand inhibition following ex vivo expansion. Cancer Immunology, Immunotherapy, 2016, 65, 1047-1059.	4.2	20
23	Genotyping Single Nucleotide Polymorphisms and Copy Number Variability of the FCGRs Expressed on NK Cells. Methods in Molecular Biology, 2016, 1441, 43-56.	0.9	8
24	NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Frontiers in Immunology, 2015, 6, 368.	4.8	411
25	Phase I Trial of a Novel Anti-GD2 Monoclonal Antibody, Hu14.18K322A, Designed to Decrease Toxicity in Children With Refractory or Recurrent Neuroblastoma. Journal of Clinical Oncology, 2014, 32, 1445-1452.	1.6	134
26	Intratumoral treatment of smaller mouse neuroblastoma tumors with a recombinant protein consisting of IL-2 linked to the Hu14.18 antibody increases intratumoral CD8+ T and NK cells and improves survival. Cancer Immunology, Immunotherapy, 2013, 62, 1303-1313.	4.2	44
27	Intratumoral hu14.18–IL-2 (IC) Induces Local and Systemic Antitumor Effects That Involve Both Activated T and NK Cells As Well As Enhanced IC Retention. Journal of Immunology, 2012, 189, 2656-2664.	0.8	64
28	Phase II trial of hu14.18-IL2 for patients with metastatic melanoma. Cancer Immunology, Immunotherapy, 2012, 61, 2261-2271.	4.2	64
29	Antitumor Activity of Hu14.18-IL2 in Patients With Relapsed/Refractory Neuroblastoma: A Children's Oncology Group (COG) Phase II Study. Journal of Clinical Oncology, 2010, 28, 4969-4975.	1.6	220
30	Phase I Study of ch14.18 With Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-2 in Children With Neuroblastoma After Autologous Bone Marrow Transplantation or Stem-Cell Rescue: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2009, 27, 85-91.	1.6	138
31	Immunogenicity of the Hu14.18-IL2 Immunocytokine Molecule in Adults With Melanoma and Children With Neuroblastoma. Clinical Cancer Research, 2009, 15, 5923-5930.	7.0	41
32	A Phase I Clinical Trial of the hu14.18-IL2 (EMD 273063) as a Treatment for Children with Refractory or Recurrent Neuroblastoma and Melanoma: a Study of the Children's Oncology Group. Clinical Cancer Research, 2006, 12, 1750-1759.	7.0	176
33	Enhanced Activity of Hu14.18-IL2 Immunocytokine against Murine NXS2 Neuroblastoma when Combined with Interleukin 2 Therapy. Clinical Cancer Research, 2004, 10, 4839-4847.	7.0	91
34	Phase I Clinical Trial of the Immunocytokine EMD 273063 in Melanoma Patients. Journal of Clinical Oncology, 2004, 22, 4463-4473.	1.6	141
35	Determination of Peak Serum Levels and Immune Response to the Humanized Anti-Ganglioside Antibody-Interleukin-2 Immunocytokine. , 2003, 85, 123-132.		12
36	A Phase Ib/II trial of granulocyte-macrophage?colony stimulating factor and interleukin-2 for renal cell carcinoma patients with pulmonary metastases. Cancer, 2000, 88, 1892-1901.	4.1	25

JACQUELYN A HANK

#	Article	IF	CITATIONS
37	Pharmacokinetics and stability of the ch14.18-interleukin-2 fusion protein in mice. Cancer Immunology, Immunotherapy, 1999, 48, 219-229.	4.2	43
38	A Phase I/IB trial of murine monoclonal anti-GD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma. Cancer, 1997, 80, 317-333.	4.1	159
39	Systemic Interleukin-2 Modulates the Anti-Idiotypic Response to Chimeric Anti-GD2 Antibody in Patients with Melanoma. Journal of Immunotherapy, 1996, 19, 278-295.	2.4	26
40	A phase II trial of human recombinant Interleukin-2 administered as a 4-day continuous infusion for children with refractory neuroblastoma, non-Hodgkin's lymphoma, sarcoma, renal cell carcinoma, and malignant melanoma. A childrens cancer group study. Cancer, 1995, 75, 2959-2965.	4.1	59
41	Strategies for improving antitumor activity utilizing IL-2: Preclinical models and analysis of antitumor activity of lymphocytes from patients receiving IL-2. Biotherapy (Dordrecht, Netherlands), 1992, 4, 189-198.	0.7	4
42	In Vivo Effects of Multiple Cycles of Recombinant Interleukin-2 (IL2) on Peripheral Granulocyte-macrophage Hematopoietic Progenitors Circulating in the Blood of Cancer Patients. Tumori, 1991, 77, 420-422.	1.1	6
43	BLT-esterase activity followingin vitro andin vivo activation of human lymphocytes with interleukin-2. Biotherapy (Dordrecht, Netherlands), 1991, 3, 253-260.	0.7	0
44	Analysis of T cell receptor β and γ genes from peripheral blood, regional lymph node and tumor-infiltrating lymphocyte clones from melanoma patients. Cancer Immunology, Immunotherapy, 1991, 32, 325-330.	4.2	20
45	Prolonged Interleukin-2 (IL-2) Treatment Can Augment Immune Activation Without Enhancing Antitumor Activity in Renal Cell Carcinom. Cancer Investigation, 1991, 9, 35-48.	1.3	15
46	Effects of interleukin-2 (IL-2) on human plasma lipid, lipoprotein, and C-reactive protein. Biotherapy (Dordrecht, Netherlands), 1990, 2, 193-198.	0.7	11
47	the influence of autologous lymphokine-activated killer cell infusions on the toxicity and antitumor effect of repetitive cycles of interleukin-2. Cancer, 1990, 66, 2457-2464.	4.1	31