Jim A Mossman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3066776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural variation in the regulation of neurodevelopmental genes modifies flight performance in Drosophila. PLoS Genetics, 2021, 17, e1008887.	1.5	10
2	Mitochondrial disease: Replace or edit?. Science, 2021, 373, 1200-1201.	6.0	9
3	Mitonuclear conflict and cooperation govern the integration of genotypes, phenotypes and environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190188.	1.8	43
4	Mitochondrial genomic variation drives differential nuclear gene expression in discrete regions of Drosophila gene and protein interaction networks. BMC Genomics, 2019, 20, 691.	1.2	15
5	The fertility fitness paradox of anabolicâ€androgenic steroid abuse in men. Journal of Internal Medicine, 2019, 286, 231-232.	2.7	11
6	Mitochondrial DNA Fitness Depends on Nuclear Genetic Background in Drosophila. G3: Genes, Genomes, Genetics, 2019, 9, 1175-1188.	0.8	22
7	Age of Both Parents Influences Reproduction and Egg Dumping Behavior in Drosophila melanogaster. Journal of Heredity, 2019, 110, 300-309.	1.0	14
8	Mitonuclear epistasis, genotypeâ€byâ€environment interactions, and personalized genomics of complex traits in <i>Drosophila</i> . IUBMB Life, 2018, 70, 1275-1288.	1.5	23
9	Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in <i>Drosophila</i> . Molecular Biology and Evolution, 2017, 34, msw246.	3.5	38
10	Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in <i>Drosophila</i> . Genetics, 2016, 204, 613-630.	1.2	55
11	Mitonuclear Epistasis for Development Time and Its Modification by Diet in <i>Drosophila</i> . Genetics, 2016, 203, 463-484.	1.2	86
12	Variation in mean human sperm length is linked with semen characteristics. Human Reproduction, 2013, 28, 22-32.	0.4	21
13	Sperm speed is associated with sex bias of siblings in a human population. Asian Journal of Andrology, 2013, 15, 152-154.	0.8	9
14	Mitochondrial haplotype does not influence sperm motility in a UK population of men. Human Reproduction, 2012, 27, 641-651.	0.4	17
15	Characterisation of the transcriptome of a wild great tit Parus major population by next generation sequencing. BMC Genomics, 2011, 12, 283.	1.2	67
16	Mitochondrial haplotype does not affect sperm velocity in the zebra finch <i>Taeniopygia guttata</i> . Journal of Evolutionary Biology, 2010, 23, 422-432.	0.8	10
17	SPERM MORPHOLOGY AND VELOCITY ARE GENETICALLY CODETERMINED IN THE ZEBRA FINCH. Evolution; International Journal of Organic Evolution, 2009, 63, 2730-2737.	1.1	88
18	TECHNICAL ARTICLE: SNP-SCALE: SNP scoring by colour and length exclusion. Molecular Ecology Notes, 2007, 7, 377-388.	1.7	15

#	Article	IF	CITATIONS
19	The whole mitochondrial genome sequence of the zebra finch (Taeniopygia guttata). Molecular Ecology Notes, 2006, 6, 1222-1227.	1.7	15