
## Kevin J Laws

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3066698/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Thermodynamic modelling to predict phase stability in BCC + B2 Al–Ti–Co–Ni–Fe–Cr high entropy<br>alloys. Materials Chemistry and Physics, 2022, 276, 125395.                                 | 4.0  | 6         |
| 2  | Assessing Mg–Sc–(rare earth) ternary phase stability via constituent binary cluster expansions.<br>Computational Materials Science, 2022, 207, 111240.                                       | 3.0  | 1         |
| 3  | Predicting ductility in quaternary B2 -like alloys. Physical Review Materials, 2021, 5, .                                                                                                    | 2.4  | 1         |
| 4  | Corrosion performance of Ni-based structural alloys for applications in molten-salt based energy systems: Experiment & amp; numerical validation. Corrosion Science, 2021, 190, 109607.      | 6.6  | 7         |
| 5  | Solvent-rich magnesium-based bulk metallic glasses in the Mg–Pd–Ca and Mg–Pd–Yb alloy systems.<br>Scripta Materialia, 2021, 204, 114120.                                                     | 5.2  | 2         |
| 6  | Zr-Co-Al bulk metallic glass composites containing B2 ZrCo via rapid quenching and annealing.<br>Journal of Alloys and Compounds, 2020, 820, 153079.                                         | 5.5  | 18        |
| 7  | Transition towards ultrastable metallic glasses in Zr-based thin films. Applied Surface Science, 2020, 533, 147453.                                                                          | 6.1  | 11        |
| 8  | A High-Throughput Structural and Electrochemical Study of Metallic Glass Formation in Ni–Ti–Al.<br>ACS Combinatorial Science, 2020, 22, 330-338.                                             | 3.8  | 31        |
| 9  | Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Science Advances, 2018, 4, eaaq1566.                                        | 10.3 | 354       |
| 10 | EXAFS and molecular dynamics simulation studies of Cu-Zr metallic glass: Short-to-medium range order and glass forming ability. Materials Characterization, 2018, 141, 41-48.                | 4.4  | 18        |
| 11 | Atomistic origin of stress overshoots and serrations in a CuZr metallic glass. Materialia, 2018, 1, 121-127.                                                                                 | 2.7  | 10        |
| 12 | General trends between solute segregation tendency and grain boundary character in aluminum - An<br>ab inito study. Acta Materialia, 2018, 158, 257-268.                                     | 7.9  | 49        |
| 13 | A blended NPT/NVT scheme for simulating metallic glasses. Computational Materials Science, 2017, 130, 130-137.                                                                               | 3.0  | 5         |
| 14 | Exceptionally broad bulk metallic glass formation in the Mg–Cu–Yb system. Acta Materialia, 2017, 128,<br>188-196.                                                                            | 7.9  | 17        |
| 15 | Amorphous phase stability and the interplay between electronic structure and topology. Acta<br>Materialia, 2017, 131, 131-140.                                                               | 7.9  | 12        |
| 16 | Stacking fault energies of nondilute binary alloys using special quasirandom structures. Physical<br>Review B, 2017, 95, .                                                                   | 3.2  | 9         |
| 17 | Formation of a phosphate conversion coating on bioresorbable Mg-based metallic glasses and its effect on corrosion performance. Corrosion Science, 2017, 129, 214-225.                       | 6.6  | 37        |
| 18 | Ab initio study of the likely orientation relationships of interphase and homophase interfaces in a<br>two-phase HCP + BCC Mg-Li alloy. Computational Materials Science, 2017, 139, 406-411. | 3.0  | 10        |

KEVIN J LAWS

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Electron-band theory inspired design of magnesium–precious metal bulk metallic glasses with high thermal stability and extended ductility. Scientific Reports, 2017, 7, 3400.                                                               | 3.3 | 9         |
| 20 | Stabilisation of Disordered bcc Phases in Magnesium-Rare Earth Alloys. Minerals, Metals and Materials<br>Series, 2017, , 497-503.                                                                                                           | 0.4 | 0         |
| 21 | Softening of phonon spectra in metallic glasses. Npj Computational Materials, 2016, 2, .                                                                                                                                                    | 8.7 | 7         |
| 22 | An atomic-scale insight into the effects of hydrogen microalloying on the glass-forming ability and ductility of Zr-based bulk metallic glasses. Computational Materials Science, 2016, 125, 197-205.                                       | 3.0 | 11        |
| 23 | Investigating the Passivity and Dissolution of a Corrosion Resistant Mg-33at.%Li Alloy in Aqueous<br>Chloride Using Online ICP-MS. Journal of the Electrochemical Society, 2016, 163, C324-C329.                                            | 2.9 | 61        |
| 24 | Examining the elemental contribution towards the biodegradation of Mg–Zn–Ca ternary metallic glasses. Journal of Materials Chemistry B, 2016, 4, 2679-2690.                                                                                 | 5.8 | 16        |
| 25 | Alloy design strategies for sustained ductility in Mg-based amorphous alloys – Tackling structural relaxation. Acta Materialia, 2016, 103, 735-745.                                                                                         | 7.9 | 32        |
| 26 | Supercooled liquid fusion of carbon fibre-bulk metallic glass composites with superplastic forming properties. Scripta Materialia, 2016, 111, 127-130.                                                                                      | 5.2 | 9         |
| 27 | Developments in High Magnesium-Content Bulk Metallic Glasses and Future Possibilities. , 2016, , 13-14.                                                                                                                                     |     | Ο         |
| 28 | High entropy brasses and bronzes – Microstructure, phase evolution and properties. Journal of Alloys and Compounds, 2015, 650, 949-961.                                                                                                     | 5.5 | 46        |
| 29 | Dynamic properties of major shear bands in Zr–Cu–Al bulk metallic glasses. Acta Materialia, 2015, 96,<br>428-436.                                                                                                                           | 7.9 | 28        |
| 30 | Heterogeneous nucleation at inoculant particles in a glass forming alloy: An ab initio molecular<br>dynamics investigation of interfacial properties and local chemical bonding. Computational Materials<br>Science, 2015, 108, 94-102.     | 3.0 | 10        |
| 31 | A first principles molecular dynamics study of the relationship between atomic structure and elastic<br>properties of Mg–Zn–Ca amorphous alloys. Computational Materials Science, 2015, 96, 246-255.                                        | 3.0 | 19        |
| 32 | Recent progress in high Bs and low Hc Fe-based nanocrystalline alloys. Nanotechnology Reviews, 2014,<br>3, .                                                                                                                                | 5.8 | 8         |
| 33 | Fabrication of an In Situ Bulk Metallic Class Composite with High Magnesium Content. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2352-2356.                                            | 2.2 | 6         |
| 34 | Ultra magnesium-rich, low-density Mg–Ni–Ca bulk metallic glasses. Scripta Materialia, 2014, 88, 37-40.                                                                                                                                      | 5.2 | 21        |
| 35 | Recent developments in ductile bulk metallic glass composites. MRS Communications, 2013, 3, 1-12.                                                                                                                                           | 1.8 | 29        |
| 36 | Quantitative <i>in vitro</i> assessment of Mg <sub>65</sub> Zn <sub>30</sub> Ca <sub>5</sub><br>degradation and its effect on cell viability. Journal of Biomedical Materials Research - Part B Applied<br>Biomaterials, 2013, 101B, 43-49. | 3.4 | 19        |

Kevin J Laws

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of the Degree of Crystallinity on the Electrochemical Behavior of Mg65Cu25Y10 and Mg70Zn25Ca5 Bulk Metallic Glasses. Corrosion, 2013, 69, 781-792.                                                                                         | 1.1 | 8         |
| 38 | Thermoplastic formability of CaMgZn bulk metallic glasses for biomedical applications. International Journal of Materials and Product Technology, 2013, 47, 233.                                                                                  | 0.2 | 1         |
| 39 | Effect of transition metals in the development of Al–Cu–Mg based metallic glass. Materials Research<br>Innovations, 2013, 17, s67-s72.                                                                                                            | 2.3 | 1         |
| 40 | Locating new Mg-based bulk metallic glasses free of rare earth elements. Journal of Alloys and<br>Compounds, 2012, 542, 105-110.                                                                                                                  | 5.5 | 24        |
| 41 | Synthesis of Ag-based bulk metallic glass in the Ag–Mg–Ca–[Cu] alloy system. Journal of Alloys and<br>Compounds, 2012, 513, 10-13.                                                                                                                | 5.5 | 22        |
| 42 | Analysis of dynamic segregation and crystallisation in Mg65Cu25Y10 bulk metallic glass using atom<br>probe tomography. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2012, 556, 558-566. | 5.6 | 11        |
| 43 | Partial Coordination Numbers in Binary Metallic Glasses. Metallurgical and Materials Transactions A:<br>Physical Metallurgy and Materials Science, 2012, 43, 2649-2661.                                                                           | 2.2 | 15        |
| 44 | Ca–Mg–Zn bulk metallic glasses as bioresorbable metals. Acta Biomaterialia, 2012, 8, 2375-2383.                                                                                                                                                   | 8.3 | 85        |
| 45 | In situ formation of crystalline flakes in Mg-based metallic glass composites by controlled inoculation. Acta Materialia, 2011, 59, 7776-7786.                                                                                                    | 7.9 | 13        |
| 46 | Prediction of Glass-Forming Compositions in Metallic Systems: Copper-Based Bulk Metallic Glasses in<br>the Cu-Mg-Ca System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2010, 41, 1699-1705.        | 2.2 | 25        |
| 47 | Phase redistribution in an in situ Mg-based bulk metallic glass composite during deformation in the supercooled liquid region. Scripta Materialia, 2010, 63, 556-559.                                                                             | 5.2 | 10        |
| 48 | Corrigendum to: "Phase redistribution in an in situ Mg-based bulk metallic glass composite during<br>deformation in the supercooled liquid region―[Scripta Materialia 63 (2010) 556–559]. Scripta<br>Materialia, 2010, 63, 903.                   | 5.2 | 0         |
| 49 | The Prediction of Glass-Forming Compositions in Metallic Systems - The Development of New Bulk<br>Metallic Glasses. Materials Science Forum, 2010, 638-642, 1637-1641.                                                                            | 0.3 | 13        |
| 50 | Viscosity-related properties of Mg65Cu25Y10 bulk metallic glass determined by uniaxial tension in the supercooled liquid region. Journal of Alloys and Compounds, 2010, 496, 582-588.                                                             | 5.5 | 6         |
| 51 | Influence of Casting Parameters on the Critical Casting Size of Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2377-2387.                                                  | 2.2 | 57        |
| 52 | Synthesis of copper-based bulk metallic glasses in the ternary Cu–Mg–Ca system. Journal of Alloys and<br>Compounds, 2009, 486, L27-L29.                                                                                                           | 5.5 | 16        |
| 53 | Mechanical stability of Ca65Mg15Zn20 bulk metallic glass during deformation in the supercooled<br>liquid region. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2008, 480, 198-204.       | 5.6 | 22        |
| 54 | Effect of loading rate on the serrated flow of a bulk metallic glass during nanoindentation. Acta<br>Materialia, 2008, 56, 4829-4835.                                                                                                             | 7.9 | 54        |

KEVIN J LAWS

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Large-scale production of Ca65Mg15Zn20 bulk metallic glass samples by low-pressure die-casting.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2008, 475, 348-354. | 5.6 | 37        |
| 56 | Elevated temperature flow behaviour of a Mg-based bulk metallic glass. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 471, 130-134.                             | 5.6 | 25        |
| 57 | Superplastic flow of a Mg-based bulk metallic glass in the supercooled liquid region. Journal of<br>Non-Crystalline Solids, 2006, 352, 3896-3902.                                                                             | 3.1 | 41        |
| 58 | Static and dynamic crystallization in Mg–Cu–Y bulk metallic glass. Journal of Non-Crystalline Solids,<br>2006, 352, 3887-3895.                                                                                                | 3.1 | 38        |
| 59 | Effect of die-casting parameters on the production of high quality bulk metallic glass samples.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2006, 425, 114-120. | 5.6 | 33        |
| 60 | The Application of 3D-EBSD for Investigating Texture Development in Metals and Alloys. Materials Science Forum, 0, 702-703, 469-474.                                                                                          | 0.3 | 0         |
| 61 | The Redistribution and Alignment of Crystalline Flakes in a Bulk Metallic Glass Composite during<br>Thermoplastic Forming. Materials Science Forum, 0, 702-703, 971-974.                                                      | 0.3 | 0         |
| 62 | 3D-EBSD Studies of Deformation, Recrystallization and Phase Transformations. Materials Science Forum, 0, 715-716, 41-50.                                                                                                      | 0.3 | 2         |
| 63 | Optimization of Glass Forming Ability of Al-Ni-Si Alloys by a Thermodynamic and Kinetic Approach.<br>Materials Science Forum, 0, 773-774, 466-470.                                                                            | 0.3 | 0         |
| 64 | Production of Mg-Based Bulk Metallic Glass Composites with High Magnesium Content. Materials Science Forum, 0, 773-774, 263-267.                                                                                              | 0.3 | 0         |
| 65 | Fabrication of Bulk Metallic Glass Composites at Low Processing Temperatures. Materials Science Forum, 0, 773-774, 461-465.                                                                                                   | 0.3 | 0         |
| 66 | Crystallization Kinetics and Fragility of Al-Based Amorphous Alloy. Materials Science Forum, 0, 1010, 3-8.                                                                                                                    | 0.3 | 0         |