## Hongwei Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3066632/publications.pdf Version: 2024-02-01



HONCWEI CHEN

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Robust interphase on both anode and cathode enables stable aqueous lithium-ion battery with coulombic efficiency exceeding 99%. Energy Storage Materials, 2022, 46, 577-582.                               | 18.0 | 14        |
| 2  | Selfâ€Activation Enables Cationic and Anionic Co‣torage in Organic Frameworks. Advanced Energy<br>Materials, 2022, 12, .                                                                                   | 19.5 | 11        |
| 3  | How Prussian Blue Analogues Can Be Stable in Concentrated Aqueous Electrolytes. ACS Energy<br>Letters, 2022, 7, 1672-1678.                                                                                 | 17.4 | 32        |
| 4  | Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor.<br>Nature Communications, 2022, 13, 2031.                                                              | 12.8 | 19        |
| 5  | Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nature Communications, 2022, 13, .                                                               | 12.8 | 61        |
| 6  | Suppressing Vacancy Defects and Grain Boundaries via Ostwald Ripening for Highâ€Performance and<br>Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1904347.                                  | 21.0 | 172       |
| 7  | Ultrathin Aramid/COF Heterolayered Membrane for Solid-State Li-Metal Batteries. Nano Letters, 2020,<br>20, 8120-8126.                                                                                      | 9.1  | 63        |
| 8  | Building Lithiophilic Ionâ€Conduction Highways on Garnetâ€Type Solidâ€State Li <sup>+</sup> Conductors.<br>Advanced Energy Materials, 2020, 10, 1904230.                                                   | 19.5 | 62        |
| 9  | Polymeric Sulfur as a Li Ion Conductor. Nano Letters, 2020, 20, 2191-2196.                                                                                                                                 | 9.1  | 15        |
| 10 | Simple Transformation of Covalent Organic Frameworks to Highly Proton-Conductive Electrolytes.<br>ACS Applied Materials & Interfaces, 2020, 12, 8198-8205.                                                 | 8.0  | 51        |
| 11 | Superionic Conductors <i>via</i> Bulk Interfacial Conduction. Journal of the American Chemical Society, 2020, 142, 18035-18041.                                                                            | 13.7 | 101       |
| 12 | Porous covalent organic frameworks for high transference number polymer-based electrolytes.<br>Chemical Communications, 2019, 55, 1458-1461.                                                               | 4.1  | 62        |
| 13 | Enhancing the performance of sulfurized polyacrylonitrile cathode by in-situ wrapping. Journal of<br>Electroanalytical Chemistry, 2019, 835, 156-160.                                                      | 3.8  | 12        |
| 14 | Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Materials, 2019,<br>23, 277-283.                                                                                     | 18.0 | 22        |
| 15 | Polymer Electrolyte Glue: A Universal Interfacial Modification Strategy for All-Solid-State Li<br>Batteries. Nano Letters, 2019, 19, 2343-2349.                                                            | 9.1  | 105       |
| 16 | Cationic Covalent Organic Framework Nanosheets for Fast Li-Ion Conduction. Journal of the<br>American Chemical Society, 2018, 140, 896-899.                                                                | 13.7 | 331       |
| 17 | Review—From Nano Size Effect to In Situ Wrapping: Rational Design of Cathode Structure for High<br>Performance Lithiumâ~'Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A6034-A6042. | 2.9  | 25        |
| 18 | In situ wrapping of the cathode material in lithium-sulfur batteries. Nature Communications, 2017, 8,<br>479.                                                                                              | 12.8 | 134       |

Hongwei Chen

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | In-situ activated polycation as a multifunctional additive for Li-S batteries. Nano Energy, 2016, 26, 43-49.                                                                                                                                   | 16.0 | 34        |
| 20 | Direct Intertube Cross-Linking of Carbon Nanotubes at Room Temperature. Nano Letters, 2016, 16,<br>6541-6547.                                                                                                                                  | 9.1  | 26        |
| 21 | Alleviating polarization by designing ultrasmall Li <sub>2</sub> S nanocrystals encapsulated in N-rich<br>carbon as a cathode material for high-capacity, long-life Li–S batteries. Journal of Materials Chemistry<br>A, 2016, 4, 18284-18288. | 10.3 | 29        |
| 22 | Monodispersed Sulfur Nanoparticles for Lithium–Sulfur Batteries with Theoretical Performance.<br>Nano Letters, 2015, 15, 798-802.                                                                                                              | 9.1  | 273       |
| 23 | Rational Design of Cathode Structure for High Rate Performance Lithium–Sulfur Batteries. Nano<br>Letters, 2015, 15, 5443-5448.                                                                                                                 | 9.1  | 147       |
| 24 | Vulcanization accelerator enabled sulfurized carbon materials for high capacity and high stability of<br>lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 1392-1395.                                                       | 10.3 | 66        |
| 25 | Sulfur–amine chemistry-based synthesis of multi-walled carbon nanotube–sulfur composites for<br>high performance Li–S batteries. Chemical Communications, 2014, 50, 1202-1204.                                                                 | 4.1  | 103       |
| 26 | Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High<br>Performance Lithium/Sulfur Batteries. Scientific Reports, 2013, 3, 1910.                                                                           | 3.3  | 193       |