Daniel Pfeiffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3066434/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3â€hydroxybutyrate). Environmental Microbiology, 2014, 16, 2357-2373.	3.8	197
2	Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Molecular Microbiology, 2011, 82, 936-951.	2.5	81
3	Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids. Scientific Reports, 2016, 6, 26612.	3.3	81
4	Localization of Poly(3-Hydroxybutyrate) (PHB) Granule-Associated Proteins during PHB Granule Formation and Identification of Two New Phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16. Journal of Bacteriology, 2012, 194, 5909-5921.	2.2	77
5	PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiology, 2012, 12, 262.	3.3	67
6	Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16. Microbiology (United Kingdom), 2011, 157, 2795-2807.	1.8	61
7	PhaM Is the Physiological Activator of Poly(3-Hydroxybutyrate) (PHB) Synthase (PhaC1) in Ralstonia eutropha. Applied and Environmental Microbiology, 2014, 80, 555-563.	3.1	54
8	Comparative Proteome Analysis Reveals Four Novel Polyhydroxybutyrate (PHB) Granule-Associated Proteins in Ralstonia eutropha H16. Applied and Environmental Microbiology, 2015, 81, 1847-1858.	3.1	48
9	A Compass To Boost Navigation: Cell Biology of Bacterial Magnetotaxis. Journal of Bacteriology, 2020, 202, .	2.2	23
10	Inactivation of an intracellular poly-3-hydroxybutyrate depolymerase of Azotobacter vinelandii allows to obtain a polymer of uniform high molecular mass. Applied Microbiology and Biotechnology, 2018, 102, 2693-2707.	3.6	19
11	The Polar Organizing Protein PopZ Is Fundamental for Proper Cell Division and Segregation of Cellular Content in <i>Magnetospirillum gryphiswaldense</i> . MBio, 2019, 10, .	4.1	16
12	A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32086-32097.	7.1	16
13	High-Throughput Microfluidic Sorting of Live Magnetotactic Bacteria. Applied and Environmental Microbiology, 2018, 84, .	3.1	12
14	Development of a Transferable Bimolecular Fluorescence Complementation System for the Investigation of Interactions between Poly(3-Hydroxybutyrate) Granule-Associated Proteins in Gram-Negative Bacteria. Applied and Environmental Microbiology, 2013, 79, 2989-2999.	3.1	9
15	Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense. Soft Matter, 2016, 12, 3631-3635.	2.7	9
16	Quantifying the Benefit of a Dedicated "Magnetoskeleton―in Bacterial Magnetotaxis by Live-Cell Motility Tracking and Soft Agar Swimming Assay. Applied and Environmental Microbiology, 2020, 86, .	3.1	9
17	Migration of Polyphosphate Granules in <i>Agrobacterium tumefaciens</i> . Microbial Physiology, 2022, 32, 71-82.	2.4	3
18	In vivo Architecture of the Polar Organizing Protein Z (PopZ) Meshwork in the Alphaproteobacteria Magnetospirillum gryphiswaldense and Caulobacter crescentus. Journal of Molecular Biology, 2022, 434, 167423.	4.2	2

#	Article	IF	CITATIONS
19	Spatiotemporal Organization of Chemotaxis Pathways in Magnetospirillum gryphiswaldense. Applied and Environmental Microbiology, 2020, 87, .	3.1	1