Roberta Campardelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/306643/publications.pdf

Version: 2024-02-01

			201674	2	289244
	55	1,656	27		40
	papers	citations	h-index		g-index
Ξ				Ī	
		5.5			1610
	55	55	55		1610
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Zein electrospun fibers purification and vanillin impregnation in a one-step supercritical process to produce safe active packaging. Food Hydrocolloids, 2022, 122, 107082.	10.7	24
2	High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. Applied Sciences (Switzerland), 2022, 12, 3642.	2.5	12
3	Bevacizumab-Controlled Delivery from Polymeric Microparticle Systems as Interesting Tools for Pathologic Angiogenesis Diseases. Polymers, 2022, 14, 2593.	4.5	2
4	Production of Vanillinâ€Loaded Zein Subâ€micron Electrospun Fibers for Food Packaging Applications. Chemical Engineering and Technology, 2021, 44, 1390-1396.	1.5	5
5	Innovative nanotools for vascular drug delivery: the atherosclerosis case study. Journal of Materials Chemistry B, 2021, 9, 8558-8568.	5. 8	5
6	Environmental and Sustainability Analysis of a Supercritical Carbon Dioxide-Assisted Process for Pharmaceutical Applications. Processes, 2021, 9, 1788.	2.8	1
7	Optimization of PCL Polymeric Films as Potential Matrices for the Loading of Alpha-Tocopherol by a Combination of Innovative Green Processes. Processes, 2021, 9, 2244.	2.8	4
8	Leather dyeing using a new liposome-based process assisted by dense gas technology. Dyes and Pigments, 2020, 173, 107985.	3.7	7
9	Antioxidants entrapment in polycaprolactone microparticles using supercritical assisted injection in a liquid antisolvent. Food and Bioproducts Processing, 2020, 123, 312-321.	3 . 6	6
10	Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods, 2020, 9, 1628.	4.3	144
11	Encapsulation of <i>Hibiscus sabdariffa</i> Extract into Zein Nanoparticles. Chemical Engineering and Technology, 2020, 43, 2062-2072.	1.5	11
12	Liposomes: From Bangham to Supercritical Fluids. Processes, 2020, 8, 1022.	2.8	63
13	Economic Analysis of a New Business for Liposome Manufacturing Using a High-Pressure System. Processes, 2020, 8, 1604.	2.8	6
14	Poly (Lactic-co-Glycolic Acid) Nanoparticles and Nanoliposomes for Protein Delivery in Targeted Therapy: A Comparative In Vitro Study. Polymers, 2020, 12, 2566.	4.5	14
15	Bioactives extraction from spent coffee grounds and liposome encapsulation by a combination of green technologies. Chemical Engineering and Processing: Process Intensification, 2020, 151, 107911.	3. 6	22
16	A supercritical assisted process for the production of amoxicillin-loaded liposomes for antimicrobial applications. Journal of Supercritical Fluids, 2020, 163, 104842.	3.2	22
17	Extraction and bioprocessing with supercritical fluids. ChemistrySelect, 2020, 5, .	1.5	1
18	Production of solid lipid nanoparticles with a supercritical fluid assisted process. Journal of Supercritical Fluids, 2019, 143, 16-23.	3.2	37

#	Article	IF	CITATIONS
19	Zein/luteolin microparticles formation using a supercritical fluids assisted technique. Powder Technology, 2019, 356, 899-908.	4.2	30
20	Antioxidant loaded emulsions entrapped in liposomes produced using a supercritical assisted technique. Journal of Supercritical Fluids, 2019, 154, 104626.	3.2	15
21	A versatile supercritical assisted process for the one-shot production of liposomes. Journal of Supercritical Fluids, 2019, 146, 136-143.	3.2	38
22	Control of liposomes diameter at micrometric and nanometric level using a supercritical assisted technique. Journal of CO2 Utilization, 2019, 32, 119-127.	6.8	44
23	Experimental Study of Water Jet Break-Up in and Supercritical Carbon Dioxide. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 22389-22398.	3.7	3
24	Efficient gram-scale continuous production of near-infrared-sensitive liposomes for light-triggered delivery of polyinosinic-polycytidylic acid. Chemical Engineering and Processing: Process Intensification, 2019, 146, 107709.	3.6	3
25	Polycaprolactone/nimesulide patches obtained by a one-step supercritical foaming + impregnation process. Journal of Supercritical Fluids, 2019, 146, 47-54.	3.2	32
26	PVP microparticles precipitation from acetone-ethanol mixtures using SAS process: Effect of phase behavior. Journal of Supercritical Fluids, 2019, 143, 321-329.	3.2	22
27	Supercritical assisted process for the efficient production of liposomes containing antibiotics for ocular delivery. Journal of CO2 Utilization, 2018, 25, 235-241.	6.8	30
28	Supercritical assisted process for the encapsulation of olive pomace extract into liposomes. Journal of Supercritical Fluids, 2018, 135, 152-159.	3.2	53
29	Production of liposomes loaded with antioxidants using a supercritical CO2 assisted process. Powder Technology, 2018, 323, 155-162.	4.2	54
30	Encapsulation of Hydrophilic and Lipophilic Compounds in Nanosomes Produced with a Supercritical Based Process. Lecture Notes in Bioengineering, 2018, , 23-35.	0.4	6
31	Supercritical CO 2 assisted liposomes formation: Optimization of the lipidic layer for an efficient hydrophilic drug loading. Journal of CO2 Utilization, 2017, 18, 181-188.	6.8	51
32	An Engineered Multiphase Three-Dimensional Microenvironment to Ensure the Controlled Delivery of Cyclic Strain and Human Growth Differentiation Factor 5 for the Tenogenic Commitment of Human Bone Marrow Mesenchymal Stem Cells. Tissue Engineering - Part A, 2017, 23, 811-822.	3.1	51
33	Dependence of SAS particle morphologies on the ternary phase equilibria. Journal of Supercritical Fluids, 2017, 130, 273-281.	3.2	35
34	Instantaneous coprecipitation of polymer/drug microparticles using the supercritical assisted injection in a liquid antisolvent. Journal of Supercritical Fluids, 2017, 120, 151-160.	3.2	16
35	Palmitoylethanolamide sub-micronization using fast precipitation followed by supercritical fluids extraction. Powder Technology, 2017, 305, 217-225.	4.2	10
36	A Supercritical Fluid-Based Process for the Production of Fluorescein-Loaded Liposomes. Industrial & Engineering Chemistry Research, 2016, 55, 5359-5365.	3.7	44

#	Article	lF	CITATIONS
37	Supercritical assisted injection in a liquid antisolvent for PLGA and PLA microparticle production. Powder Technology, 2016, 287, 12-19.	4.2	27
38	Injectable PLGA/Hydroxyapatite/Chitosan Microcapsules Produced by Supercritical Emulsion Extraction Technology: An InÂVitro Study on Teriparatide/Gentamicin Controlled Release. Journal of Pharmaceutical Sciences, 2016, 105, 2164-2172.	3.3	33
39	Efficient encapsulation of proteins in submicro liposomes using a supercritical fluid assisted continuous process. Journal of Supercritical Fluids, 2016, 107, 163-169.	3.2	50
40	Liposomes Size Engineering by Combination of Ethanol Injection and Supercritical Processing. Journal of Pharmaceutical Sciences, 2015, 104, 3842-3850.	3.3	26
41	Synergistic effect of sustained release of growth factors and dynamic culture on osteoblastic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 2161-2171.	4.0	44
42	Supercritical fluids based techniques to process pharmaceutical products difficult to micronize: Palmitoylethanolamide. Journal of Supercritical Fluids, 2015, 102, 24-31.	3.2	29
43	Supercritical fluids applications in nanomedicine. Journal of Supercritical Fluids, 2015, 101, 193-214.	3.2	108
44	\hat{l}_{\pm} -Tocopherol nanosuspensions produced using a supercritical assisted process. Journal of Food Engineering, 2015, 149, 131-136.	5.2	47
45	Au–PLA nanocomposites for photothermally controlled drug delivery. Journal of Materials Chemistry B, 2014, 2, 409-417.	5.8	48
46	Liposomes preparation using a supercritical fluid assisted continuous process. Chemical Engineering Journal, 2014, 249, 153-159.	12.7	73
47	Polymethylmethacrylate (PMMA) sub-microparticles produced by Supercritical Assisted Injection in a Liquid Antisolvent. Journal of Supercritical Fluids, 2014, 92, 93-99.	3.2	22
48	Encapsulation of titanium dioxide nanoparticles in PLA microspheres using supercritical emulsion extraction to produce bactericidal nanocomposites. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	31
49	Monodisperse biopolymer nanoparticles by Continuous Supercritical Emulsion Extraction. Journal of Supercritical Fluids, 2013, 76, 67-73.	3.2	35
50	Lipid nanoparticles production by supercritical fluid assisted emulsion–diffusion. Journal of Supercritical Fluids, 2013, 82, 34-40.	3.2	23
51	Biopolymer Particles for Proteins and Peptides Sustained Release Produced by Supercritical Emulsion Extraction. Procedia Engineering, 2012, 42, 239-246.	1.2	9
52	Preparation of Stable Aqueous Nanodispersions of \hat{l}^2 -Carotene by Supercritical Assisted Injection in a Liquid Antisolvent. Procedia Engineering, 2012, 42, 1493-1501.	1,2	14
53	Solvent elimination from polymer nanoparticle suspensions by continuous supercritical extraction. Journal of Supercritical Fluids, 2012, 70, 100-105.	3.2	39
54	Nanoparticle precipitation by Supercritical Assisted Injection in a Liquid Antisolvent. Chemical Engineering Journal, 2012, 192, 246-251.	12.7	34

#	Article	IF	CITATIONS
55	PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: Continuous versus batch operation layouts. Journal of Pharmaceutical Sciences, 2011, 100, 4357-4367.	3.3	41