Ruth Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3066229/publications.pdf

Version: 2024-02-01

62 papers

1,281 citations

20 h-index 377865 34 g-index

64 all docs

64 docs citations

64 times ranked 736 citing authors

#	Article	IF	CITATIONS
1	Strictly third ventricle craniopharyngiomas: pathological verification, anatomo-clinical characterization and surgical results from a comprehensive overview of 245 cases. Neurosurgical Review, 2022, 45, 375-394.	2.4	12
2	Craniopharyngioma and the Third Ventricle: This Inescapable Topographical Relationship. Frontiers in Oncology, 2022, 12, 872689.	2.8	2
3	Papillary Craniopharyngioma: A Type of Tumor Primarily Impairing the Hypothalamus – A Comprehensive Anatomo-Clinical Characterization of 350 Well-Described Cases. Neuroendocrinology, 2022, 112, 941-965.	2.5	8
4	Basal Recess in Third Ventricle Tumors. Journal of Neuropathology and Experimental Neurology, 2022,	1.7	0
5	Craniopharyngiomas primarily affecting the hypothalamus. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 181, 75-115.	1.8	12
6	Letter to the Editor: Craniopharyngiomas in the elderly: the crucial influence of tumor topography on surgical risk assessment. Neuroendocrinology, 2021, , .	2.5	3
7	Craniopharyngiomas in adults: Are these tumors pituitary or hypothalamic centered?. , 2021, 40, 299-301.		O
8	CirugÃa del craneofaringioma basada en la topografÃa tumoral: relaciones anatómicas que predicen el riesgo quirúrgico individual. Neurocirugia, 2021, 32, 258-260.	0.4	0
9	Craniopharyngioma adherence: a reappraisal of the evidence. Neurosurgical Review, 2020, 43, 453-472.	2.4	22
10	Joseph Engel (1816–1899), author of a meaningful dissertation on tumors of the pituitary infundibulum: his report on the oldest preserved whole craniopharyngioma specimen. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 476, 773-782.	2.8	4
11	Craniopharyngioma treatment: an updated summary of important clinicopathological concepts. Expert Review of Endocrinology and Metabolism, 2020, 15, 261-282.	2.4	19
12	Craniopharyngioma Diagnosis: A Rationale for Accurate MRI Assessment of Tumor Topography and Adhesion to the Hypothalamus., 2020,, 55-77.		2
13	Cushing's dogged struggle against death: the astonishing case of a patient under cardiac arrest surviving craniopharyngioma surgery. Journal of Neurosurgery, 2020, , 1-10.	1.6	2
14	Percival S. Bailey: eminent scholar of neurosciences who revealed the workings of the hypothalamus through clinicopathological research on craniopharyngiomas. Journal of Neurosurgery, 2020, 133, 197-209.	1.6	2
15	Letter to the Editor. The craniopharyngioma-hypothalamus relationship. Journal of Neurosurgery, 2020, 133, 270-271.	1.6	3
16	Charles H. Frazier's craniopharyngioma treatment: the pivotal role of the transfrontal approach. Journal of Neurosurgery, 2020, 133, 1739-1752.	1.6	1
17	Assessment of postoperative complications in craniopharyngioma patients: An approach based on the heterogeneous tumor-hypothalamus relationship. , 2020, 11, 47.		1
18	Letter: A Clinical Rule for Preoperative Prediction of BRAF Mutation Status in Craniopharyngiomas. Neurosurgery, 2019, 85, E962-E965.	1.1	4

#	Article	IF	CITATIONS
19	Craniopharyngioma: 10 Selected Works That Provide Comprehensive and Valuable Insight into These Complex Tumors. World Neurosurgery, 2019, 122, 710-712.	1.3	2
20	Harvey Cushing's craniopharyngioma treatment: Part 2. Surgical strategies and results of his pioneering series. Journal of Neurosurgery, 2019, 131, 964-978.	1.6	13
21	FÃstulas arteriovenosas espinales durales: ¿tratamiento precoz endovascular o quirúrgico?. NeurologÃa, 2019, 34, 557-560.	0.7	0
22	Harvey Cushing's craniopharyngioma treatment: Part 1. Identification and clinicopathological characterization of this challenging pituitary tumor. Journal of Neurosurgery, 2019, 131, 949-963.	1.6	18
23	Letter to the Editor. Heterogeneous hypothalamic adhesion among third ventricle craniopharyngiomas. Journal of Neurosurgery, 2019, 131, 1340-1342.	1.6	1
24	Cystic tumors of the pituitary infundibulum: seminal autopsy specimens (1899 to 1904) that allowed clinical-pathological craniopharyngioma characterization. Pituitary, 2018, 21, 393-405.	2.9	15
25	Can tissue biomarkers reliably predict the biological behavior of craniopharyngiomas? A comprehensive overview. Pituitary, 2018, 21, 431-442.	2.9	26
26	Preoperative Assessment of Craniopharyngioma Adherence: Magnetic Resonance Imaging Findings Correlated with the Severity of Tumor Attachment to the Hypothalamus. World Neurosurgery, 2018, 110, e404-e426.	1.3	36
27	Craniopharyngiomas Primarily Involving the Hypothalamus: A Model of Neurosurgical Lesions to Elucidate the Neurobiological Basis of Psychiatric Disorders. World Neurosurgery, 2018, 120, e1245-e1278.	1.3	34
28	Letter to the Editor. The role of preoperative MRI in predicting craniopharyngioma behavior. Journal of Neurosurgery, 2018, 129, 252-254.	1.6	0
29	Giant Dumbbell-Shaped Thoracic Schwannoma in an Elderly Patient Resected Through a Single-Stage Combined Laminectomy and Video-Assisted Thoracoscopy: Surgical Strategy and Technical Nuances. World Neurosurgery, 2018, 119, 155-162.	1.3	5
30	Craniopharyngiomas: An Appropriate Surgical Treatment based on Topographical and Pathological Concepts. OBM Neurobiology, 2018, 2, 1-1.	0.6	7
31	Norman M. Dott, master of hypothalamic craniopharyngioma surgery: the decisive mentoring of Harvey Cushing and Percival Bailey at Peter Bent Brigham Hospital. Journal of Neurosurgery, 2017, 127, 927-940.	1.6	17
32	Jean Camus and Gustave Roussy: pioneering French researchers on the endocrine functions of the hypothalamus. Pituitary, 2017, 20, 409-421.	2.9	3
33	Giovanni Verga (1879–1923), author of a pioneering treatise on pituitary surgery: the foundations of this new field in Europe in the early 1900s. Neurosurgical Review, 2017, 40, 559-575.	2.4	5
34	Topographic Diagnosis of Craniopharyngiomas: The Accuracy of MRI Findings Observed on Conventional T1 and T2 Images. American Journal of Neuroradiology, 2017, 38, 2073-2080.	2.4	46
35	Craniopharyngioma: Surgical Outcome as Related to the Degree of Hypothalamic Involvement. World Neurosurgery, 2017, 104, 1006-1010.	1.3	16
36	Optic chiasm distortions in craniopharyngiomas: a sign of hypothalamic involvement. Acta Neurochirurgica, 2017, 159, 1533-1535.	1.7	1

#	Article	IF	CITATIONS
37	Harvey Cushing and pituitary Case Number 3 (Mary D.): the origin of this most baffling problem in neurosurgery. Neurosurgical Focus, 2016, 41, E6.	2.3	21
38	Craniopharyngioma adherence: a comprehensive topographical categorization and outcome-related risk stratification model based on the methodical examination of 500 tumors. Neurosurgical Focus, 2016, 41, E13.	2.3	85
39	Craniopharyngioma recurrence: the impact of tumor topography. Journal of Neurosurgery, 2016, 125, 1043-1049.	1.6	16
40	Sir Victor Horsley: pioneer craniopharyngioma surgeon. Journal of Neurosurgery, 2015, 123, 39-51.	1.6	19
41	The infundibulo-tuberal syndrome caused by craniopharyngiomas: clinicopathological evidence from an historical French cohort (1705–1973). Pituitary, 2015, 18, 642-657.	2.9	40
42	Jakob Erdheim (1874–1937): father of hypophyseal-duct tumors (craniopharyngiomas). Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 467, 459-469.	2.8	39
43	Infundibulo-tuberal syndrome: the origins of clinical neuroendocrinology in France. Pituitary, 2015, 18, 838-843.	2.9	17
44	Optic Chiasm Distortions Caused by Craniopharyngiomas: Clinical and Magnetic Resonance Imaging Correlation and Influence on Visual Outcome. World Neurosurgery, 2015, 83, 500-529.	1.3	81
45	Letters to the Editor: Craniopharyngioma adherence to the hypothalamus. Neurosurgical Focus, 2014, 37, 1-9.	2.3	11
46	Development of intracranial approaches for craniopharyngiomas: an analysis of the first 160 historical procedures. Neurosurgical Focus, 2014, 36, E13.	2.3	46
47	Accurate Craniopharyngioma Topography for Patient Outcome Improvement. World Neurosurgery, 2014, 82, e555-e559.	1.3	7
48	Predictive Factors for Craniopharyngioma Recurrence: A Systematic Review and Illustrative Case Report of a Rapid Recurrence. World Neurosurgery, 2013, 79, 733-749.	1.3	73
49	Craniopharyngiomas with a mixed histological pattern: the missing link to the intriguing pathogenesis of adamantinomatous and squamousâ€papillary varieties?. Neuropathology, 2013, 33, 682-686.	1.2	27
50	Hypothalamus-referenced classification for craniopharyngiomas: evidence provided by the endoscopic endonasal approach. Neurosurgical Review, 2013, 36, 337-340.	2.4	20
51	Displacement of mammillary bodies by craniopharyngiomas involving the third ventricle: surgical-MRI correlation and use in topographical diagnosis. Journal of Neurosurgery, 2013, 119, 381-405.	1.6	95
52	Craniopharyngiomas of the third ventricle: topographical concepts of surgical interest. British Journal of Neurosurgery, 2013, 27, 268-269.	0.8	6
53	Response. Journal of Neurosurgery, 2013, 119, 1650-3.	1.6	3
54	Classification Systems of Adult Craniopharyngiomas: The Need for an Accurate Definition of the Hypothalamus–Tumor Relationships. Archives of Medical Research, 2012, 43, 588-590.	3.3	8

Ruth Prieto

#	Article	IF	CITATIONS
55	Surgical Management of Severe Closed Head Injury in Adults. , 2012, , 1513-1538.		6
56	Lowâ€grade malignant triton tumor in the lumbar spine: A rare variant of malignant peripheral nerve sheath tumor with rhabdomyoblastic differentiation. Neuropathology, 2012, 32, 180-189.	1.2	16
57	Brain energy depletion in a rodent model of diffuse traumatic brain injury is not prevented with administration of sodium lactate. Brain Research, 2011, 1404, 39-49.	2.2	23
58	Craniopharyngiomas involving the floor of the third ventricle. Acta Neurochirurgica, 2011, 153, 2447-2450.	1.7	9
59	Infundibulo-tuberal or not strictly intraventricular craniopharyngioma: evidence for a major topographical category. Acta Neurochirurgica, 2011, 153, 2403-2426.	1.7	104
60	Letter to the Editor. Journal of Neurosurgery, 2010, 112, 1156-1161.	1.6	22
61	Craniopharyngioma Classification. Journal of Neurosurgery, 2008, 109, 1180-1182.	1.6	72
62	Time Course of Early Metabolic Changes following Diffuse Traumatic Brain Injury in Rats as Detected by 1H NMR Spectroscopy. Journal of Neurotrauma, 2007, 24, 944-959.	3.4	56