Francisco Javier RodrÃ-guez Tovar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3065807/publications.pdf

Version: 2024-02-01

224 papers

5,027 citations

76326 40 h-index 155660 55 g-index

236 all docs

236 docs citations

times ranked

236

2803 citing authors

#	Article	IF	CITATIONS
1	X-ray microtomography analysis to approach bioturbation's influence on minor-scale porosity distribution: A novel approach in contourite deposits. Journal of Petroleum Science and Engineering, 2022, 208, 109251.	4.2	7
2	Environmental significance of trace fossil assemblages in a tideâ€'wave-dominated shallow-marine carbonate system (Lower Cretaceous), northern Neo-Tethys margin, Kopet-Dagh Basin, Iran. International Journal of Earth Sciences, 2022, 111, 103-126.	1.8	14
3	Ichnological evidence for bottom water oxygenation during organic rich layer deposition in the westernmost Mediterranean over the Last Glacial Cycle. Marine Geology, 2022, 443, 106673.	2.1	2
4	Ichnofabric analysis of shallow to deep marine Carboniferous sediments, from the southern Paleotethys margin, Alborz Basin (northern Iran): approaching autogenic and allogenic environmental controls. Historical Biology, 2022, 34, 2000-2019.	1.4	6
5	Recognizing key sedimentary facies and their distribution in mixed turbidite–contourite depositional systems: The case of the Pacific margin of the Antarctic Peninsula. Sedimentology, 2022, 69, 1953-1991.	3.1	12
6	Trace fossil characterization during Termination V and MIS 11 at the western Mediterranean: Connection between surface conditions and deep environment. Marine Geology, 2022, 446, 106774.	2.1	1
7	Ichnological analysis: A tool to characterize deep-marine processes and sediments. Earth-Science Reviews, 2022, 228, 104014.	9.1	14
8	Reply to the comment on "lchnological analysis: A tool to characterize deep-marine processes and sedimentsâ€-by Francisco J. RodrÃguez-Tovar [Earth-Science Reviews, 228 (2022), 104014]. Earth-Science Reviews, 2022, , 104046.	9.1	0
9	Multi-technique comparison to assess the effect of bioturbation on porosity: a study case for reservoir quality in contourites. Facies, 2022, 68, .	1.4	1
10	Deep-Sea Echinoid Trails and Seafloor Nutrient Distribution: Present and Past Implications. Frontiers in Marine Science, 2022, 9, .	2.5	7
11	Life before impact in the Chicxulub area: unique marine ichnological signatures preserved in crater suevite. Scientific Reports, 2022, 12, .	3.3	2
12	Cyclic environmental changes during the Early Toarcian at the Mochras Farm Borehole (Wales): a variable response of the foraminiferal community. Lethaia, 2021, 54, 113-126.	1.4	3
13	Sedimentological and ichnological signatures of an offshore-transitional hyperpycnal system (Upper) Tj ETQq1 1 561, 110039.	0.784314 2.3	4 rgBT /Overlo 7
14	Contourite characterization and its discrimination from other deepâ€water deposits in the Gulf of Cadiz contourite depositional system. Sedimentology, 2021, 68, 987-1027.	3.1	37
15	Ichnological analysis as a tool for assessing deep-sea circulation in the westernmost Mediterranean over the last Glacial Cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110082.	2.3	4
16	Bioerosion structures from the Pliocene of the Agua Amarga Subbasin (AlmerÃa, SE Spain): Palaeoecological and palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110071.	2.3	5
17	Diagnostic criteria using microfacies for calcareous contourites, turbidites and pelagites in the Eocene–Miocene slope succession, southern Cyprus. Sedimentology, 2021, 68, 557-592.	3.1	33
18	Paleoecologic and paleoenvironmental implications of a new trace fossil recording infaunal molting in Devonian marginal-marine settings. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561, 110043.	2.3	4

#	Article	IF	Citations
19	The Late Miocene Rifian corridor as a natural laboratory to explore a case of ichnofacies distribution in ancient gateways. Scientific Reports, 2021, 11, 4198.	3.3	10
20	The <i>Halimedides</i> record in the Asturian Basin (northern Spain): supporting the Toarcian Oceanic Anoxic Event relationship. Geological Society Special Publication, 2021, 514, 173-184.	1.3	3
21	Rhizoliths in Lower Pliocene alluvial fan deposits of the Sorbas Basin (AlmerÃa, SE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567, 110281.	2.3	2
22	Ichnology of the Toarcian Oceanic Anoxic Event: An understimated tool to assess palaeoenvironmental interpretations. Earth-Science Reviews, 2021, 216, 103579.	9.1	11
23	Minor changes in biomarker assemblages in the aftermath of the Cretaceous-Paleogene mass extinction event at the Agost distal section (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 569, 110310.	2.3	6
24	Bottom- and pore-water oxygenation during the early Toarcian Oceanic Anoxic Event (T-OAE) in the Asturian Basin (N Spain): Ichnological information to improve facies analysis. Sedimentary Geology, 2021, 419, 105909.	2.1	8
25	Deep-sea bottom currents influencing tracemaker community: An ichnological study from the NW lberian margin. Marine Geology, 2021, 437, 106503.	2.1	8
26	The trace fossil record of the Toarcian Oceanic Anoxic Event in the Iberian Massif. Geology Today, 2021, 37, 134-140.	0.9	2
27	Eocene-Oligocene paleoenvironmental changes in the South Orkney Microcontinent (Antarctica) linked to the opening of Powell Basin. Global and Planetary Change, 2021, 204, 103581.	3.5	8
28	Palaeoenvironmental changes after the Messinian Salinity Crisis in the Mediterranean AlmerÃa-NÃjar Basin (SE Spain) recorded by benthic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577, 110536.	2.3	0
29	Response of macrobenthic trace maker community to the end-Permian mass extinction in Central Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 581, 110637.	2.3	3
30	Evolution of a fluvial-dominated delta during the Oligocene of the Colombian Caribbean: Sedimentological and ichnological signatures in well-cores. Journal of South American Earth Sciences, 2021, 111, 103440.	1.4	7
31	Maximum Entropy Spectral Analysis. Encyclopedia of Earth Sciences Series, 2021, , 1-8.	0.1	1
32	The complex case of Macaronichnus trace fossil affecting rock porosity. Scientific Reports, 2021, 11, 1975.	3.3	11
33	Landscape Mapping, Ichnological and Benthic Foraminifera Trends in a Deep-Water Gateway, Discovery Gap, NE Atlantic. Geosciences (Switzerland), 2021, 11, 474.	2.2	1
34	Ichnofabric analysis as a tool for characterization and differentiation between calcareous contourites and calciturbidites. Journal of Sedimentary Research, 2021, 91, 1151-1165.	1.6	2
35	Ichnological analysis of the Cenomanian–Turonian boundary interval in a collapsing slope setting: A case from the Rio Fardes section, southern Spain. Cretaceous Research, 2020, 106, 104262.	1.4	7
36	First Record of Graphoglyptids in Cyprus: Indicative Presence of Turbidite Deposits at the Pakhna Formation. Ichnos, 2020, 27, 237-243.	0.5	5

#	Article	IF	Citations
37	Applied ichnology in sedimentary geology: Python scripts as a method to automatize ichnofabric analysis in marine core images. Computers and Geosciences, 2020, 136, 104407.	4.2	11
38	Changes in western Mediterranean thermohaline circulation in association with a deglacial Organic Rich Layer formation in the Alboran Sea. Quaternary Science Reviews, 2020, 228, 106075.	3.0	20
39	Burrowed matrix powering dual porosity systems – A case study from the Maastrichtian chalk of the Gullfaks Field, Norwegian North Sea. Marine and Petroleum Geology, 2020, 113, 104158.	3.3	23
40	Microscale trace-element distribution across the Cretaceous/Palaeogene ejecta layer at the Agost section: Constraining the recovery of pre-impact conditions. Chemical Geology, 2020, 533, 119431.	3.3	5
41	Rapid macrobenthic diversification and stabilization after the end-Cretaceous mass extinction event. Geology, 2020, 48, 1048-1052.	4.4	13
42	CroSSED sequence, a new tool for 3D processing in geosciences using the free software 3DSlicer. Scientific Data, 2020, 7, 270.	5.3	13
43	Faunal assemblage changes, bioturbation and benthic storms at an abyssal station in the northeastern Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 160, 103277.	1.4	8
44	Contourites and bottom current reworked sands: Bed facies model and implications. Marine Geology, 2020, 428, 106267.	2.1	54
45	Image processing techniques to improve characterization of composite ichnofabrics. Ichnos, 2020, 27, 258-267.	0.5	8
46	Regional and global changes during Heinrich Event 1 affecting macrobenthic habitat: Ichnological evidence of sea-bottom conditions at the Galicia Interior Basin. Global and Planetary Change, 2020, 192, 103227.	3.5	6
47	Danian-lower Selandian Microcodium-rich calcarenites of the Subbetic Zone (SE Spain): Record of Nereites ichnofacies in a deep-sea, base-of-slope system. Sedimentary Geology, 2020, 406, 105723.	2.1	5
48	Behavioural responses of Rhizocorallium to storm events: Evidence from the Middle Triassic of SW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545, 109640.	2.3	3
49	Exploring computed tomography in ichnological analysis of cores from modern marine sediments. Scientific Reports, 2020, 10, 201.	3.3	17
50	Macaronichnus and contourite depositional settings: Bottom currents and nutrients as coupling factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545, 109639.	2.3	21
51	Trace fossil evidence for infaunal moulting in a Middle Devonian non-trilobite euarthropod. Scientific Reports, 2020, 10, 5316.	3.3	4
52	Late Oligocene-Miocene proto-Antarctic Circumpolar Current dynamics off the Wilkes Land margin, East Antarctica. Global and Planetary Change, 2020, 191, 103221.	3.5	20
53	Life and death in the Chicxulub impact crater: a record of the Paleocene–Eocene Thermal Maximum. Climate of the Past, 2020, 16, 1889-1899.	3.4	16
54	Is Macaronichnus an exclusively small, horizontal and unbranched structure? Macaronichnus segregatis degiberti isubsp. nov Spanish Journal of Paleontology, 2020, 29, 131.	0.1	19

#	Article	IF	CITATIONS
55	Application of digital image treatment to the characterization and differentiation of deep-sea ichnofacies. Spanish Journal of Paleontology, 2020, 30, 265.	0.1	19
56	Integrative stratigraphy and climatic events of a new lower Paleogene reference section from the Betic Cordillera: RÃo Gor, Granada province, SE Spain. Spanish Journal of Paleontology, 2020, 32, 185.	0.1	4
57	The record of Avetoichnus luisaeuchman & Department of Paleontology, 2020, 27, 67.	0.1	0
58	Editorial Revista Española de PaleontologÃa. Spanish Journal of Paleontology, 2020, 26, 1.	0.1	0
59	Ichnology of the Winnipeg Formation, southeast Saskatchewan: a glimpse into the marine infaunal ecology of the Great Ordovician Biodiversification Event. Lethaia, 2019, 52, 14-30.	1.4	0
60	Ecological snapshot of a population of Panopea within their traces (Pliocene, Agua Amarga subbasin,) Tj ETQq0 0	0.rgBT/C	verlock 10 T
61	A NEW TEICHICHNOID TRACE FOSSIL SYRINGOMORPHA CYPRENSIS FROM THE MIOCENE OF CYPRUS. Palaios, 2019, 34, 506-514.	1.3	6
62	Ichnofacies distribution in the Eocene-Early Miocene Petra Tou Romiou outcrop, Cyprus: sea level dynamics and palaeoenvironmental implications in a contourite environment. International Journal of Earth Sciences, 2019, 108, 2531-2544.	1.8	18
63	Key evidence for distal turbiditic- and bottom-current interactions from tubular turbidite infills. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533, 109233.	2.3	18
64	Microcodium-rich turbidites in hemipelagic sediments during the Paleocene–Eocene Thermal Maximum: Evidence for extreme precipitation events in a Mediterranean climate (RÃo Gor section,) Tj ETQq0 0 0	rg &	rlaudzk 10 Tf 5
65	Contourite facies model: Improving contourite characterization based on the ichnological analysis. Sedimentary Geology, 2019, 384, 60-69.	2.1	35
66	A new method for reconstructing past-climate trends using tree-ring data and kernel smoothing. Dendrochronologia, 2019, 55, 1-15.	2.2	0
67	Introducing Fiji and ICY image processing techniques in ichnological research as a tool for sedimentary basin analysis. Marine Geology, 2019, 413, 1-9.	2.1	26
68	Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles. Earth and Planetary Science Letters, 2019, 511, 117-129.	4.4	14
69	Opportunistic behaviour after the Toarcian Oceanic Anoxic Event: The trace fossil Halimedides. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 520, 240-250.	2.3	11
70	Crowded tubular tidalites in Miocene shelf sandstones of southern Iberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 521, 1-9.	2.3	4
71	Lateral variability of ichnological content in muddy contourites: Weak bottom currents affecting organismsâ∈™ behavior. Scientific Reports, 2019, 9, 17713.	3 . 3	26
72	Stable deep-sea macrobenthic trace maker associations in disturbed environments from the Eocene Lefkara Formation, Cyprus. Geobios, 2019, 52, 37-45.	1.4	22

#	Article	IF	CITATIONS
73	Trace fossils evidence of a complex history of nutrient availability and oxygen conditions during Heinrich Event 1. Global and Planetary Change, 2019, 174, 26-34.	3.5	12
74	Application of laser ablation-ICP-MS to determine high-resolution elemental profiles across the Cretaceous/Paleogene boundary at Agost (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 497, 128-138.	2.3	11
75	Lateral variability of ichnofabrics in marine cores: Improving sedimentary basin analysis using Computed Tomography images and high-resolution digital treatment. Marine Geology, 2018, 397, 72-78.	2.1	8
76	Ichnological analysis of contourites: Past, present and future. Earth-Science Reviews, 2018, 182, 28-41.	9.1	51
77	Appraising timing response of paleoenvironmental proxies to the Bond cycle in the western Mediterranean over the last 20Âkyr. Climate Dynamics, 2018, 50, 2925-2934.	3.8	5
78	Ichnological Analysis of a Good of Cultural Interest: the Site of El Hoyo (El Castellar, Arag \tilde{A}^3 n, Spain). Geoheritage, 2018, 10, 415-425.	2.8	3
79	Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 2018, 558, 288-291.	27.8	123
80	Multi-storm events recorded on Panopea burrows (Pliocene, Spain): The importance of sequestered information inside burrows. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 507, 155-167.	2.3	5
81	High-resolution data from Laser Ablation-ICP-MS and by ICP-OES analyses at the Cretaceous/Paleogene boundary section at Agost (SE Spain). Data in Brief, 2018, 18, 1900-1906.	1.0	3
82	Reply to comment on "lchnological analysis of contourites: Past, present and future―by Francisco J. RodrÃguez-Tovar and F. Javier Hernández-Molina [Earth-Science Reviews, 182 (2018), 28-41]. Earth-Science Reviews, 2018, 184, 50-51.	9.1	1
83	The Toarcian Oceanic Anoxic Event in the South Iberian Palaeomargin. SpringerBriefs in Earth Sciences, 2018, , .	0.5	20
84	High-resolution image treatment in ichnological core analysis: Initial steps, advances and prospects. Earth-Science Reviews, 2018, 177, 226-237.	9.1	51
85	Ichnological analysis at the Fonte Coberta section (Lusitanian Basin, Portugal): Approaching depositional environment during the Toarcian oceanic anoxic event (T-OAE). Spanish Journal of Paleontology, 2018, 33, 261.	0.1	9
86	The Phycosiphon record in the Ladrilleros-Juanchaco section (Miocene, Colombian Pacifi c): palaeoecological implications. Spanish Journal of Paleontology, 2018, 33, 277.	0.1	3
87	Median Subbetic Outcrops. SpringerBriefs in Earth Sciences, 2018, , 85-119.	0.5	0
88	The Betic External Zones. SpringerBriefs in Earth Sciences, 2018, , 5-22.	0.5	0
89	External Subbetic Outcrops. SpringerBriefs in Earth Sciences, 2018, , 23-83.	0.5	0
90	Ichnological record of the Frasnian–Famennian boundary interval: two examples from the Holy Cross Mts (Central Poland). International Journal of Earth Sciences, 2017, 106, 157-170.	1.8	11

#	Article	IF	CITATIONS
91	Trace fossils from the Middle and Upper Eocene (Bartonian–Priabonian) molasse deposits of the Pamplona Basin (Navarre, western Pyrenees): palaeoenvironmental implications. Geological Journal, 2017, 52, 327-349.	1.3	4
92	Evolutionary trend of Zoophycosmorphotypes from the Upper Cretaceous-Lower Miocene in the type pelagic sections of Gubbio, Italy. Lethaia, 2017, 50, 41-57.	1.4	22
93	Outcrop and core integrative ichnofabric analysis of Miocene sediments from Lepe, Huelva (SW Spain): Improving depositional and paleoenvironmental interpretations. Sedimentary Geology, 2017, 349, 62-78.	2.1	10
94	Selective incidence of the toarcian oceanic anoxic event on macroinvertebrate marine communities: a case from the Lusitanian basin, Portugal. Lethaia, 2017, 50, 548-560.	1.4	29
95	Toarcian Oceanic Anoxic Event induced unusual behaviour and palaeobiological changes in Thalassinoides tracemakers. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 46-56.	2.3	44
96	Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography, 2017, 32, 284-303.	3.0	128
97	The effect of bioturbation by polychaetes (Opheliidae) on benthic foraminiferal assemblages and test preservation. Palaeontology, 2017, 60, 807-827.	2.2	15
98	The Faraoni event (latest Hauterivian) in ichnological record: The RÃo Argos section of southern Spain. Cretaceous Research, 2017, 79, 109-121.	1.4	15
99	Paleoenvironmental conditions across the Cretaceous–Paleogene transition at the Apennines sections (Italy): An integrated geochemical and ichnological approach. Cretaceous Research, 2017, 71, 1-13.	1.4	18
100	Evaluating macrobenthic response to the Cretaceous–Palaeogene event: A high-resolution ichnological approach at the Agost section (SE Spain). Cretaceous Research, 2017, 70, 96-110.	1.4	24
101	Fossil associations from the middle and upper Eocene strata of the Pamplona Basin and surrounding areas (Navarre, western Pyrenees). Journal of Iberian Geology, 2016, 42, .	1.3	7
102	Spectral analysis of time series of categorical variables in earth sciences. Computers and Geosciences, 2016, 95, 99-104.	4.2	1
103	<i>Rosselia socialis</i> from the Ordovician of Asturias (Northern Spain) and the Early Evolution of Equilibrium Behavior in Polychaetes. Ichnos, 2016, 23, 147-155.	0.5	16
104	Ichnological record of palaeoenvironment from the Cretaceous-Paleogene boundary interval at El Kef, Tunisia: The first study of old and new sections at the stratotype area. Journal of African Earth Sciences, 2016, 120, 23-30.	2.0	11
105	Taenidium at the lower Barremian El Hoyo dinosaur tracksite (Teruel, Spain): Assessing palaeoenvironmental conditions for the invertebrate community. Cretaceous Research, 2016, 65, 48-58.	1.4	17
106	<i>Zoophycos</i> in deepâ€sea sediments indicates high and seasonal primary productivity: Ichnology as a proxy in palaeoceanography during glacial–interglacial variations. Terra Nova, 2016, 28, 323-328.	2.1	32
107	Ichnological analysis of the Upper Miocene in the ANH-Tumaco-1-ST-P well: assessing paleoenvironmental conditions at the Tumaco Basin, in the Colombian Pacific. Journal of South American Earth Sciences, 2016, 71, 41-53.	1.4	5
108	High resolution digital image treatment to color analysis on cores from IODP Expedition 339: Approaching lithologic features and bioturbational influence. Marine Geology, 2016, 377, 127-135.	2.1	17

#	Article	IF	CITATIONS
109	Researching Protected Geosites: In Situ and Non-Destructive Analysis of Mass-Extinction Bioevents. Geoheritage, 2016, 8, 351-357.	2.8	4
110	Trace Fossils Assemblages from the Cenozoic "Flysch Units―of the Campo de Gibraltar Complex (Southern Spain). Ichnos, 2016, 23, 53-70.	0.5	12
111	Contourite vs gravity-flow deposits of the Pleistocene Faro Drift (Gulf of Cadiz): Sedimentological and mineralogical approaches. Marine Geology, 2016, 377, 77-94.	2.1	61
112	Quaternary chronostratigraphic framework and sedimentary processes for the Gulf of Cadiz and Portuguese Contourite Depositional Systems derived from Natural Gamma Ray records. Marine Geology, 2016, 377, 40-57.	2.1	32
113	Stratigraphic variation in ichnofabrics at the "Shackleton Site―(IODP Site U1385) on the Iberian Margin: Paleoenvironmental implications. Marine Geology, 2016, 377, 118-126.	2.1	19
114	Reworked tsunami deposits by bottom currents: Circumstantial evidences from Late Pleistocene to Early Holocene in the Gulf of $\tilde{\text{CA}}_i$ diz. Marine Geology, 2016, 377, 95-109.	2.1	16
115	Geochemical and isotopic characterization of trace fossil infillings: New insights on tracemaker activity after the K/Pg impact event. Cretaceous Research, 2016, 57, 391-401.	1.4	23
116	The End-Cretaceous Extinction and Ecosystem Change. Topics in Geobiology, 2016, , 265-300.	0.5	11
117	A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin. Global and Planetary Change, 2015, 133, 49-64.	3.5	99
118	Comparison of the Performance of Two Advanced Spectral Methods for the Analysis of Times Series in Paleoceanography. Journal of Marine Science and Engineering, 2015, 3, 957-967.	2.6	4
119	Borings in gneiss boulders in the Miocene (Upper Tortonian) of the Sorbas Basin, SE Spain. Geological Magazine, 2015, 152, 287-297.	1.5	12
120	A delayed response of the trace fossil community at the Cretaceous-Paleogene boundary in the Bottaccione section, Gubbio, Central Italy. Geobios, 2015, 48, 137-145.	1.4	23
121	Deep Endichnial <i>Cruziana</i> from the Lower-Middle Ordovician of Spain — A Unique Trace Fossil Record of Trilobitomorph Deep Burrowing Behavior. Ichnos, 2015, 22, 12-18.	0.5	5
122	How bioturbation obscured the Cretaceous–Palaeogene boundary record. Terra Nova, 2015, 27, 225-230.	2.1	34
123	Deep-sea trace fossil and benthic foraminiferal assemblages across glacial Terminations 1, 2 and 4 at the "Shackleton Site―(IODP Expedition 339, Site U1385). Global and Planetary Change, 2015, 133, 359-370.	3.5	29
124	Response of macrobenthic and foraminifer communities to changes in deep-sea environmental conditions from Marine Isotope Stage (MIS) 12 to 11 at the "Shackleton Site― Global and Planetary Change, 2015, 133, 176-187.	3.5	35
125	Toarcian ammonitico rosso facies from the South Iberian Paleomargin (Betic Cordillera, southern) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 1.4	 A7verloc <mark>k</mark>
126	Lower Ordovician (Arenig) shallow-marine trace fossils of the Pochico Formation, southern Spain: palaeoenvironmental and palaeogeographic implications at the Gondwanan and peri-Gondwanan realm. Journal of Iberian Geology, 2014, 40, .	1.3	12

#	Article	IF	CITATIONS
127	Characteristics, distribution patterns, and implications for ichnology of modern burrows of Uca (Leptuca) speciosa, SanÂSalvador Island, Bahamas. Journal of Crustacean Biology, 2014, 34, 565-572.	0.8	7
128	A NOVEL APPLICATION OF DIGITAL IMAGE TREATMENT BY QUANTITATIVE PIXEL ANALYSIS TO TRACE FOSSIL RESEARCH IN MARINE CORES. Palaios, 2014, 29, 533-538.	1.3	34
129	Ichnological analysis of Pleistocene sediments from the IODP Site U1385 "Shackleton Site―on the Iberian margin: Approaching paleoenvironmental conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 409, 24-32.	2.3	43
130	Quantitative estimation of bioturbation based on digital image analysis. Marine Geology, 2014, 349, 55-60.	2.1	59
131	Digital image treatment applied to ichnological analysis of marine core sediments. Facies, 2014, 60, 39-44.	1.4	60
132	Saharan aeolian input and effective humidity variations over western Europe during the Holocene from a high altitude record. Chemical Geology, 2014, 374-375, 1-12.	3.3	71
133	Orbital Climate Cycles in the Fossil Record: From Semidiurnal to Million-Year Biotic Responses. Annual Review of Earth and Planetary Sciences, 2014, 42, 69-102.	11.0	12
134	The ichnogenus <i>Tubotomaculum</i> : an enigmatic pellet-filled structure from Upper Cretaceous to Miocene deep-marine deposits of southern Spain. Journal of Paleontology, 2014, 88, 1189-1198.	0.8	13
135	Lateral and vertical variations in contaminated sediments from the Tinto River area (Huelva, SW) Tj ETQq1 1 0.784 Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414, 426-437.	4314 rgBT 2.3	/Overlock 1 4
136	Substrate-independent feeding mode of the ichnogenus Phymatoderma from the Lower Jurassic shelf-sea deposits of central and western Europe. Sedimentary Geology, 2014, 312, 19-30.	2.1	8
137	Influence of Physicochemical Parameters on Burrowing Activities of the Fiddler Crab <i>Uca tangeri</i> at the Huelva Coast (Southwest Spain): Palaeoichnological Implications. Ichnos, 2014, 21, 147-157.	0.5	5
138	The Early Toarcian Oceanic Anoxic Event in the External Subbetic (Southiberian Palaeomargin,) Tj ETQq0 0 0 rgBT Palaeoclimatology, Palaeoecology, 2014, 411, 79-94.	/Overlock 2.3	10 Tf 50 30 76
139	Millennial- to centennial-scale climate periodicities and forcing mechanisms in the westernmost Mediterranean for the past 20,000 yr. Quaternary Research, 2014, 81, 78-93.	1.7	46
140	Palaeoenvironment of Eocene prodelta in Spitsbergen recorded by the trace fossil <i>Phycosiphon incertum</i> . Polar Research, 2014, 33, 23786.	1.6	26
141	Differential Effects of Bioturbation on Benthic Foraminiferal Distribution Across the Cretaceous–Palaeogene (K–Pg) Boundary at Bidart (Southwestern France). Springer Geology, 2014, , 61-63.	0.3	1
142	Composite Trace Fossil Assemblage in a Distal Carbonate Setting from the Tethys (Middle Jurassic,) Tj ETQq0 0 0 0	rgBT /Over	lgck 10 Tf 5
143	Incidence of obliquity and precession-forced Milankovitch cycles in the western Mediterranean: early Messinian sedimentation in the Sorbas Basin (AlmerÃa, southern Spain). International Journal of Earth Sciences, 2013, 102, 1735-1755.	1.8	7
144	Palaeoenvironmental changes during the Danian–Selandian boundary interval: The ichnological record at the Sopelana section (Basque Basin, W Pyrenees). Sedimentary Geology, 2013, 284-285, 106-116.	2.1	7

#	Article	IF	CITATIONS
145	Ichnological characteristics of Late Cretaceous hemipelagic and pelagic sediments in a submarine high around the OAE-2 event: A case from the Rybie section, Polish Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 370, 222-231.	2.3	38
146	Variations in population structure of Diplocraterion parallelum: Hydrodynamic influence, food availability, or nursery settlement?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369, 501-509.	2.3	9
147	Exceptionally favourable life conditions for macrobenthos during the Late Cenomanian OAE-2 event: Ichnological record from the Bonarelli Level in the Grajcarek Unit, Polish Carpathians. Cretaceous Research, 2013, 46, 1-10.	1.4	24
148	Bottom-Water Conditions in a Marine Basin after the Cretaceous–Paleogene Impact Event: Timing the Recovery of Oxygen Levels and Productivity. PLoS ONE, 2013, 8, e82242.	2.5	26
149	Environmental conditions during the Toarcian Oceanic Anoxic Event (T-OAE) in the westernmost Tethys: influence of the regional context on a global phenomenon. Bulletin of Geosciences, 2013, , 697-712.	1.1	59
150	The Toarcian oceanic anoxic event in the Western Saharan Atlas, Algeria (North African paleomargin): Role of anoxia and productivity. Bulletin of the Geological Society of America, 2012, 124, 1646-1664.	3.3	73
151	ICHNOLOGICAL ANALYSIS OF LATERAL ENVIRONMENTAL HETEROGENEITY WITHIN THE BONARELLI LEVEL (UPPERMOST CENOMANIAN) IN THE CLASSICAL LOCALITIES NEAR GUBBIO, CENTRAL APENNINES, ITALY. Palaios, 2012, 27, 48-54.	1.3	40
152	Foraminiferal morphogroups as a tool to approach the Toarcian Anoxic Event in the Western Saharan Atlas (Algeria). Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 323-325, 87-99.	2.3	64
153	Palaeoenvironmental and functional interpretation of Rhizocorallium jenense spinosus (ichnosubsp.) Tj ETQq1 1 0 Palaeoecology, 2012, 339-341, 114-120.).784314 r 2 . 3	gBT /Over <mark>loc</mark> 14
154	Ecological replacement of Valanginian agglutinated foraminifera during a maximum flooding event in the Boreal realm (Spitsbergen). Cretaceous Research, 2012, 33, 196-204.	1.4	22
155	Bio-events, foraminiferal and nannofossil biostratigraphy of the Cenomanian/Turonian boundary interval in the Subsilesian Nappe, Rybie section, Polish Carpathians. Cretaceous Research, 2012, 35, 181-198.	1.4	18
156	Spectral and cross-spectral analysis of uneven time series with the smoothed Lomb–Scargle periodogram and Monte Carlo evaluation of statistical significance. Computers and Geosciences, 2012, 49, 207-216.	4.2	37
157	Palaeogeography and relative sea-level history forcing eco-sedimentary contexts in Late Jurassic epicontinental shelves (Prebetic Zone, Betic Cordillera): An ecostratigraphic approach. Earth-Science Reviews, 2012, 111, 154-178.	9.1	23
158	Zoophycos cyclicity during the last 425ka in the northeastern South China Sea: Evidence for monsoon fluctuation at the Milankovitch scale. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305, 256-263.	2.3	21
159	Vertical displacement and taphonomic filtering of nannofossils by bioturbation in the Cretaceous–Palaeogene boundary section at Caravaca, SE Spain. Lethaia, 2011, 44, 321-328.	1.4	30
160	Ichnological data as a useful tool for deep-sea environmental characterization: a brief overview and an application to recognition of small-scale oxygenation changes during the Cenomanian–Turonian anoxic event. Geo-Marine Letters, 2011, 31, 525-536.	1.1	21
161	Implemented Lomb-Scargle periodogram: a valuable tool for improving cyclostratigraphic research on unevenly sampled deep-sea stratigraphic sequences. Geo-Marine Letters, 2011, 31, 537-545.	1.1	17
162	Impact of the Paleocene–Eocene Thermal Maximum on the macrobenthic community: Ichnological record from the Zumaia section, northern Spain. Marine Geology, 2011, 282, 178-187.	2.1	26

#	Article	IF	CITATIONS
163	Ichnological analysis of the Bidart and Sopelana Cretaceous/Paleogene (K/Pg) boundary sections (Basque Basin, W Pyrenees): Refining eco-sedimentary environment. Sedimentary Geology, 2011, 234, 42-55.	2.1	26
164	The Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section, Spain. Episodes, 2011, 34, 86-108.	1.2	69
165	Planktonic versus benthic foraminifera response to Milankovitch forcing (Late Jurassic, Betic) Tj ETQq1 1 0.784314	4 rgBT /Ov	erlock 10 <mark>Tf</mark>
166	Bioturbational redistribution of Danian calcareous nannofossils in the uppermost Maastrichtian across the K-Pg boundary at Bidart, SW France. Geobios, 2010, 43, 569-579.	1.4	42
167	Using ichnofossils to characterize chert tools: A preliminary study from Southern Iberia. Geoarchaeology - an International Journal, 2010, 25, 514-526.	1.5	6
168	Ichnological analysis: a non-destructive tool in archaeology. Lethaia, 2010, 43, 587-590.	1.4	8
169	Mobility of iridium in terrestrial environments: Implications for the interpretation of impact-related mass-extinctions. Geochimica Et Cosmochimica Acta, 2010, 74, 4531-4542.	3.9	17
170	Sea-level dynamics and palaeoecological factors affecting trace fossil distribution in Eocene turbiditic deposits (Gorrondatxe section, N Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285, 50-65.	2.3	45
171	Ecostratigraphic trends of Jurassic agglutinated foraminiferal assemblages as a response to sea-level changes in shelf deposits of Svalbard (Norway). Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293, 184-196.	2.3	37
172	ICHNOFABRIC EVIDENCE FOR THE LACK OF BOTTOM ANOXIA DURING THE LOWER TOARCIAN OCEANIC ANOXIC EVENT IN THE FUENTE DE LA VIDRIERA SECTION, BETIC CORDILLERA, SPAIN. Palaios, 2010, 25, 576-587.	1.3	56
173	Foraminiferal morphogroups in dysoxic shelf deposits from the Jurassic of Spitsbergen. Polar Research, 2009, 28, 214-221.	1.6	70
174	Oceanic Anoxic Event at the Cenomanian–Turonian boundary interval (OAE-2): ichnological approach from the Betic Cordillera, southern Spain. Lethaia, 2009, 42, 407-417.	1.4	53
175	The environmental disaster of Aznalcóllar (southern Spain) as an approach to the Cretaceous–Palaeogene mass extinction event. Geobiology, 2009, 7, 533-543.	2.4	9
176	Nutrient spatial variation during intrabasinal upwelling at the Cenomanian–Turonian oceanic anoxic event in the westernmost Tethys: An ichnological and facies approach. Sedimentary Geology, 2009, 215, 83-93.	2.1	38
177	Taphonomy of fossil macro-invertebrate assemblages as a tool for ecostratigraphic interpretation in Upper Jurassic shelf deposits (Prebetic Zone, southern Spain). Geobios, 2008, 41, 31-42.	1.4	14
178	Bioturbational disturbance of the Cretaceous-Palaeogene (K-Pg) boundary layer: Implications for the interpretation of the K-Pg boundary impact event. Geobios, 2008, 41, 661-667.	1.4	46
179	Palaeoenvironmental turnover across the Ypresian–Lutetian transition at the Agost section, Southastern Spain: In search of a marker event to define the Stratotype for the base of the Lutetian Stage. Marine Micropaleontology, 2008, 69, 297-313.	1.2	31
180	Benthic foraminiferal morphogroups of mid to outer shelf environments of the Late Jurassic (Prebetic Zone, southern Spain): Characterization of biofacies and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261, 280-299.	2.3	100

#	Article	IF	Citations
181	Ichnological record of deep-sea palaeoenvironmental changes around the Oceanic Anoxic Event 2 (Cenomanian–Turonian boundary): An example from the Barnasiówka section, Polish Outer Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 262, 61-71.	2.3	52
182	Large burrow systems in marine Miocene deposits of the Betic Cordillera (Southeast Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268, 19-25.	2.3	40
183	Foraminiferal Assemblages as Palaeoenvironmental Bioindicators in Late Jurassic Epicontinental Platforms: Relation with Trophic Conditions. Acta Palaeontologica Polonica, 2008, 53, 705-722.	0.4	75
184	Trace Fossil Rhizocorallium From The Middle Triassic Of The Betic Cordillera, Southern Spain: Characterization And Environmental Implications. Palaios, 2008, 23, 78-86.	1.3	38
185	Palynological evidence for astronomical forcing in Early Miocene lacustrine deposits from Rubielos de Mora Basin (NE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 601-616.	2.3	32
186	Ichnological analysis in high-resolution sequence stratigraphy: The Glossifungites ichnofacies in Triassic successions from the Betic Cordillera (southern Spain). Sedimentary Geology, 2007, 198, 293-307.	2.1	52
187	Substrate Firmness Controlling Nesting Behavior of <italic>Bembix Oculata</italic> (Hymenoptera,) Tj ETQq1 1 ().784314	rgBT /Overl <mark>oc</mark>
188	Maximum entropy spectral analysis of climatic time series revisited: Assessing the statistical significance of estimated spectral peaks. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	24
189	Use of high-resolution ichnological and stable isotope data for assessing completeness of a K–P boundary section, Agost, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237, 137-146.	2.3	40
190	Ichnological analysis of the Cretaceous–Palaeogene boundary interval at the Caravaca section, SE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 242, 313-325.	2.3	62
191	Approaching trophic structure in Late Jurassic neritic shelves: A western Tethys example from southern Iberia. Earth-Science Reviews, 2006, 79, 101-139.	9.1	32
192	MAXENPER: a program for maximum entropy spectral estimation with assessment of statistical significance by the permutation test. Computers and Geosciences, 2005, 31, 555-567.	4.2	30
193	Microbial encrustations from the Middle Oxfordian-earliest Kimmeridgian lithofacies in the Prebetic Zone (Betic Cordillera, southern Spain): characterization, distribution and controlling factors. Facies, 2005, 50, 529-543.	1.4	47
194	Fe-oxide spherules infilling Thalassinoides burrows at the Cretaceous-Paleogene (K-P) boundary: Evidence of a near-contemporaneous macrobenthic colonization during the K-P event. Geology, 2005, 33, 585.	4.4	53
195	High-resolution palynological analysis in late early–middle Miocene core from the Pannonian Basin, Hungary: climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216, 73-97.	2.3	101
196	Trace fossils after the KT boundary event from the Agost section, SE Spain. Geological Magazine, 2004, 141, 429-440.	1.5	65
197	POWGRAF2: a program for graphical spectral analysis in cyclostratigraphy. Computers and Geosciences, 2004, 30, 533-542.	4.2	8
198	Ichnotaxonomic analysis of the Cretaceous/Palaeogene boundary interval in the Agost section, south-east Spain. Cretaceous Research, 2004, 25, 635-647.	1.4	43

#	Article	IF	CITATIONS
199	Microboring and taphonomy in Middle Oxfordian to lowermost Kimmeridgian (Upper Jurassic) from the Prebetic Zone (southern Iberia). Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212, 181-197.	2.3	15
200	Carbon isotope evidence for the timing of the Cretaceous–Palaeogene macrobenthic colonisation at the Agost section (southeast Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203, 65-72.	2.3	40
201	Microboring and taphonomy in Middle Oxfordian to lowermost Kimmeridgian (Upper Jurassic) from the Prebetic Zone (southern Iberia). Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212, 181-197.	2.3	22
202	Palaeogeographic and stratigraphic distribution of mid-late Oxfordian foraminiferal assemblages in the Prebetic Zone (Betic Cordillera, Southern Spain). Geobios, 2003, 36, 733-747.	1.4	32
203	Sequence stratigraphy and bedding rhythms of an outer ramp limestone succession (Late) Tj ETQq1 1 0.784314	rgBT/Ove	rlock 10 Tf <mark>5</mark> (
204	Strong evidence of high-frequency (sub-Milankovitch) orbital forcing by amplitude modulation of Milankovitch signals. Earth and Planetary Science Letters, 2003, 210, 179-189.	4.4	14
205	A Late Jurassic Carbonate Ramp Colonized by Sponges and Benthic Microbial Communities (External) Tj ETQq $1\ 1$	0.784314 1.3	rgBT/Overlo
206	Fossil assemblages, lithofacies, taphofacies and interpreting depositional dynamics in the epicontinental Oxfordian of the Prebetic Zone, Betic Cordillera, southern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 185, 53-75.	2.3	51
207	Trace-fossils and minor discontinuities in a marl limestone rhythmite, Lower–Middle Kimmeridgian, southern Spain. Geobios, 2002, 35, 581-593.	1.4	13
208	A library of computer programs for assisting teaching and research in cyclostratigraphic analysis. Computers and Geosciences, 2000, 26, 723-740.	4.2	18
209	The permutation test as a non-parametric method for testing the statistical significance of power spectrum estimation in cyclostratigraphic research. Earth and Planetary Science Letters, 2000, 181, 175-189.	4.4	52
210	Diplocraterion: A Useful Marker for Sequence Stratigraphy and Correlation in the Kimmeridgian, Jurassic (Prebetic Zone, Betic Cordillera, southern Spain). Palaios, 2000, 15, 546-552.	1.3	32
211	Multifactorial control on deposition of epicontinental hemi-pelagic carbonates during the earliest Kimmeridgian (Prebetic Zone, southern Spain). Sedimentary Geology, 1998, 119, 123-139.	2.1	5
212	La limite Oxfordien-Kimméridgien établie par une espèce index d'ammonites (Sutneria) (Algarve,) Tj ETQq0 (La Terre Et Des Planètes =, 1998, 326, 641-645.	0 0 rgBT /0 0.2	Overlock 10 1 0
213	Ecostratigraphic approaches, sequence stratigraphy proposals and block tectonics: examples from epioceanic swell areas in south and east Iberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 121, 273-295.	2.3	26
214	Using Ecostratigraphic Trends in Sequence Stratigraphy. Coastal Systems and Continental Margins, 1995, , 59-85.	0.0	13
215	CYSTRATI: A computer program for spectral analysis of stratigraphic successions. Computers and Geosciences, 1994, 20, 511-584.	4.2	36
216	Macroinvertebrate assemblages andecostratigraphic structuration within a Highstand System Tract. An example from the lower Kimmeridgian in Southern Iberia. Geobios, 1994, 27, 605-614.	1.4	7

#	Article	IF	CITATIONS
217	Ecostratigraphy and sequence stratigraphy in high frequency sea level fluctuations: examples from Jurassic macroinvertebrate assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 101, 131-145.	2.3	19
218	Lower Kimmeridgian biostratigraphy in the Central Prebetic (Southern Spain. Cazorla and Segura de la) Tj ETQq0	0 0 ; ţgBT ,	Overlock 107
219	The marl-limestone rhythmites from the Lower Kimmeridgian (Platynota Zone) of the central Prebetic and their relationship with variations in orbital parameters. Earth and Planetary Science Letters, 1992, 111, 407-424.	4.4	11
220	New record of Barthelia subbetica Olóriz & Schairer (Jurassic Ammonitina) from the South Iberian paleomargin (Prebetic zone, Spain). Neues Jahrbuch Fýr Geologie Und Paläntologie, 1992, 1992, 343-350.	0.3	3
221	The "Shackleton Site" (IODP Site U1385) on the Iberian Margin. Scientific Drilling, 0, 16, 13-19.	0.6	41
222	Selective colonization after storm events in a delta environment: applied ichnology from the early Miocene of Taiwan. Ichnos, 0 , $1-13$.	0.5	1
223	Ichnofabric characterization in cores: a method of digital image treatment. Annales Societatis Geologorum Poloniae, 0, , .	0.1	4
224	Evaluation of Soil Evolution After a Fire in the Southeast of Spain: A Multiproxy Approach. Spanish Journal of Soil Science, $0,11,$	0.0	1