Francesc Xavier Avilés i Puigvert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3065540/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinformatics, 2007, 8, 65.	2.6	845
2	The structure of histone H1 and its location in chromatin. Nature, 1980, 288, 675-679.	27.8	710
3	Short amino acid stretches can mediate amyloid formation in globular proteins: The Src homology 3 (SH3) case. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7258-7263.	7.1	241
4	Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. Journal of Molecular Biology, 2001, 311, 395-408.	4.2	230
5	Amyloid Fibril Formation by a Partially Structured Intermediate State of α-Chymotrypsin. Journal of Molecular Biology, 2004, 342, 321-331.	4.2	206
6	An automated classification of the structure of protein loops. Journal of Molecular Biology, 1997, 266, 814-830.	4.2	189
7	Prediction of "hot spots" of aggregation in disease-linked polypeptides. BMC Structural Biology, 2005, 5, 18.	2.3	173
8	Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain. Journal of Molecular Biology, 1998, 283, 1027-1036.	4.2	165
9	Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer's peptide. Side-chain properties correlate with aggregation propensities. FEBS Journal, 2006, 273, 658-668.	4.7	164
10	Folding of small disulfide-rich proteins: clarifying the puzzle. Trends in Biochemical Sciences, 2006, 31, 292-301.	7.5	154
11	Inclusion bodies: Specificity in their aggregation process and amyloid-like structure. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1815-1825.	4.1	131
12	Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Molecular Biology, 2005, 57, 189-202.	3.9	130
13	Metallocarboxypeptidases and their protein inhibitors. BBA - Proteins and Proteomics, 2000, 1477, 284-298.	2.1	129
14	lle-Phe Dipeptide Self-Assembly: Clues to Amyloid Formation. Biophysical Journal, 2007, 92, 1732-1741.	0.5	129
15	Three-dimensional structure of porcine pancreatic procarboxypeptidase A. Journal of Molecular Biology, 1992, 224, 141-157.	4.2	117
16	A novel subfamily of mouse cytosolic carboxypeptidases. FASEB Journal, 2007, 21, 836-850.	0.5	112
17	Protein engineering as a strategy to avoid formation of amyloid fibrils. Protein Science, 2000, 9, 1700-1708.	7.6	109
18	New Palladium(II) and Platinum(II) Complexes with the Model Nucleobase 1-Methylcytosine:Â Antitumor Activity and Interactions with DNA. Inorganic Chemistry, 2005, 44, 7365-7376.	4.0	107

#	Article	IF	CITATIONS
19	Complementary positional proteomics for screening substrates of endo- and exoproteases. Nature Methods, 2010, 7, 512-515.	19.0	106
20	Nnalâ€like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily. FASEB Journal, 2007, 21, 851-865.	0.5	95
21	Metallocarboxypeptidases: Emerging Drug Targets in Biomedicine. Current Pharmaceutical Design, 2007, 13, 349-366.	1.9	95
22	Favourable native-like helical local interactions can accelerate protein folding. Folding & Design, 1997, 2, 23-33.	4.5	92
23	The three-dimensional structure of human procarboxypeptidase A2. Deciphering the basis of the inhibition, activation and intrinsic activity of the zymogen. EMBO Journal, 1997, 16, 6906-6913.	7.8	92
24	Structure of human carboxypeptidase A4 with its endogenous protein inhibitor, latexin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3978-3983.	7.1	89
25	New Palladium(II) and Platinum(II) Complexes with 9-Aminoacridine: Structures, Luminiscence, Theoretical Calculations, and Antitumor Activity. Inorganic Chemistry, 2008, 47, 6990-7001.	4.0	89
26	Complete amino acid analysis of proteins by dabsyl derivatization and reversed-phase liquid chromatogrphy. Journal of Chromatography A, 1986, 358, 401-413.	3.7	88
27	Detection of transient protein–protein interactions by bimolecular fluorescence complementation: The Abl-SH3 case. Proteomics, 2007, 7, 1023-1036.	2.2	85
28	A novel vanadyl complex with a polypyridyl DNA intercalator as ligand: A potential anti-protozoa and anti-tumor agent. Journal of Inorganic Biochemistry, 2009, 103, 1386-1394.	3.5	85
29	DNA interaction and cytotoxicity studies of new ruthenium(II) cyclopentadienyl derivative complexes containing heteroaromatic ligands. Journal of Inorganic Biochemistry, 2011, 105, 241-249.	3.5	83
30	Palladium(II) and Platinum(II) Organometallic Complexes with the Model Nucleobase Anions of Thymine, Uracil, and Cytosine:Â Antitumor Activity and Interactions with DNA of the Platinum Compoundsâ—‹. Inorganic Chemistry, 2006, 45, 6347-6360.	4.0	82
31	Inhibition of carboxypeptidase A by excess zinc: analysis of the structural determinants by X-ray crystallography. FEBS Letters, 1997, 400, 336-340.	2.8	81
32	Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction. Journal of Molecular Biology, 1998, 279, 1193-1210.	4.2	80
33	A Carboxypeptidase Inhibitor from the Medical Leech Hirudo medicinalis. Journal of Biological Chemistry, 1998, 273, 32927-32933.	3.4	78
34	Potato Carboxypeptidase Inhibitor, a T-knot Protein, Is an Epidermal Growth Factor Antagonist That Inhibits Tumor Cell Growth. Journal of Biological Chemistry, 1998, 273, 12370-12377.	3.4	78
35	Advances in metallo-procarboxypeptidases. Emerging details on the inhibition mechanism and on the activation process. FEBS Journal, 1993, 211, 381-389.	0.2	77
36	The Structure of Human Prokallikrein 6 Reveals a Novel Activation Mechanism for the Kallikrein Family. Journal of Biological Chemistry, 2002, 277, 27273-27281.	3.4	74

#	Article	IF	CITATIONS
37	Crystal structure of avian carboxypeptidase D domain II: a prototype for the regulatory metallocarboxypeptidase subfamily. EMBO Journal, 1999, 18, 5817-5826.	7.8	71
38	Structure of a novel leech carboxypeptidase inhibitor determined free in solution and in complex with human carboxypeptidase A2. Nature Structural Biology, 2000, 7, 322-328.	9.7	71
39	The Crystal Structure of the Inhibitor-complexed Carboxypeptidase D Domain II and the Modeling of Regulatory Carboxypeptidases. Journal of Biological Chemistry, 2001, 276, 16177-16184.	3.4	71
40	A Carboxypeptidase Inhibitor from the Tick Rhipicephalus bursa. Journal of Biological Chemistry, 2005, 280, 3441-3448.	3.4	70
41	Identification and Characterization of Three Members of the Human Metallocarboxypeptidase Gene Family. Journal of Biological Chemistry, 2002, 277, 14954-14964.	3.4	69
42	Human Procarboxypeptidase B: Three-dimensional Structure and Implications for Thrombin-activatable Fibrinolysis Inhibitor (TAFI). Journal of Molecular Biology, 2002, 321, 537-547.	4.2	66
43	Structural basis of the resistance of an insect carboxypeptidase to plant protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16602-16607.	7.1	64
44	Purification and properties of five different forms of human procarboxypeptidases. FEBS Journal, 1989, 179, 609-616.	0.2	62
45	Human kallikrein 6 activity is regulated via an autoproteolytic mechanism of activation/inactivation. Biological Chemistry, 2004, 385, 517-24.	2.5	62
46	Heterogeneity of S-layer proteins from aggregating and non-aggregating Lactobacillus kefir strains. Antonie Van Leeuwenhoek, 2009, 95, 363-372.	1.7	62
47	The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Molecular Biology of the Cell, 2014, 25, 3017-3027.	2.1	62
48	The severed activation segment of porcine pancreatic procarboxypeptidase a is a powerful inhibitor of the active enzyme Isolation and characterisation of the activation peptide. BBA - Proteins and Proteomics, 1982, 707, 74-80.	2.1	61
49	ArchDB: automated protein loop classification as a tool for structural genomics. Nucleic Acids Research, 2004, 32, 185D-188.	14.5	61
50	Early Kinetics of Amyloid Fibril Formation Reveals Conformational Reorganisation of Initial Aggregates. Journal of Molecular Biology, 2007, 366, 1351-1363.	4.2	60
51	Protein complementation assays: Approaches for the in vivo analysis of protein interactions. FEBS Letters, 2009, 583, 1684-1691.	2.8	60
52	The Three-Dimensional Structures of Tick Carboxypeptidase Inhibitor in Complex with A/B Carboxypeptidases Reveal a Novel Double-headed Binding Mode. Journal of Molecular Biology, 2005, 350, 489-498.	4.2	57
53	Characterization of the Substrate Specificity of Human Carboxypeptidase A4 and Implications for a Role in Extracellular Peptide Processing. Journal of Biological Chemistry, 2010, 285, 18385-18396.	3.4	57
54	Free Energies of Transfer of Trp Analogs from Chloroform to Water:Â Comparison of Theory and Experiment and the Importance of Adequate Treatment of Electrostatic and Internal Interactions. Journal of the American Chemical Society, 1996, 118, 6285-6294.	13.7	52

#	Article	IF	CITATIONS
55	Overexpression of Human Procarboxypeptidase A2 in Pichia pastoris and Detailed Characterization of Its Activation Pathway. Journal of Biological Chemistry, 1998, 273, 3535-3541.	3.4	52
56	Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nature Protocols, 2008, 3, 22-33.	12.0	51
57	Analysis of the activation process of porcine procarboxypeptidase B and determination of the sequence of its activation segment. Biochemistry, 1991, 30, 4082-4089.	2.5	50
58	DNA interaction and antiproliferative behavior of the water soluble platinum supramolecular squares [(en)Pt(N–N)]4(NO3)8 (en=ethylenediamine, N–N=4,4′-bipyridine or) Tj ETQq0 0 0 rgBT /Overlo	ock 30 5Tf 5	0 6 1 7 Td (1,4
59	Modelling repressor proteins docking to DNA. , 1998, 33, 535-549.		48
60	Internalization of cystatinâ $\in f$ C in human cell lines. FEBS Journal, 2008, 275, 4571-4582.	4.7	48
61	Differential scanning calorimetric study of carboxypeptidase B, procarboxypeptidase B and its globular activation domain. FEBS Journal, 1991, 200, 663-670.	0.2	46
62	Mapping the Pro-region of Carboxypeptidase B by Protein Engineering. Journal of Biological Chemistry, 1999, 274, 19925-19933.	3.4	45
63	Platinum complexes of diaminocarboxylic acids and their ethyl ester derivatives: the effect of the chelate ring size on antitumor activity and interactions with GMP and DNA. Journal of Inorganic Biochemistry, 2003, 96, 493-502.	3.5	45
64	A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Plant Biotechnology Journal, 2007, 5, 537-553.	8.3	45
65	Use of artichoke (Cynara scolymus) flower extract as a substitute for bovine rennet in the manufacture of Gouda-type cheese: Characterization of aspartic proteases. Food Chemistry, 2014, 159, 55-63.	8.2	44
66	Expression of a synthetic gene encoding potato carboxypeptidase inhibitor using a bacterial secretion vector. Gene, 1992, 116, 129-138.	2.2	42
67	Characterization of the wound-induced metallocarboxypeptidase inhibitor from potato1. FEBS Letters, 1998, 440, 175-182.	2.8	42
68	Crystal structure of a novel Mid-gut procarboxypeptidase from the cotton pest Helicoverpa armigera. Journal of Molecular Biology, 2001, 313, 629-638.	4.2	42
69	Cyclobutane-containing peptides: Evaluation as novel metallocarboxypeptidase inhibitors and modelling of their mode of action. Bioorganic and Medicinal Chemistry, 2009, 17, 3824-3828.	3.0	42
70	Molecular dynamics simulation of highly charged proteins: Comparison of the particle-particle particle particle particle-mesh and reaction field methods for the calculation of electrostatic interactions. Protein Science, 2009, 12, 2161-2172.	7.6	42
71	Identification of function-associated loop motifs and application to protein function prediction. Bioinformatics, 2006, 22, 2237-2243.	4.1	41
72	Influence of the position of substituents in the cytotoxic activity of trans platinum complexes with hydroxymethyl pyridines. Bioorganic and Medicinal Chemistry, 2007, 15, 969-979.	3.0	41

#	Article	IF	CITATIONS
73	Mammalian metallopeptidase inhibition at the defense barrier ofAscarisparasite. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1743-1747.	7.1	41
74	Progress in metallocarboxypeptidases and their small molecular weight inhibitors. Biochimie, 2010, 92, 1484-1500.	2.6	41
75	Proteome-derived Peptide Libraries to Study the Substrate Specificity Profiles of Carboxypeptidases. Molecular and Cellular Proteomics, 2013, 12, 2096-2110.	3.8	40
76	Water-soluble platinum(II) complexes of diamine chelating ligands bearing amino-acid type substituents: the effect of the linked amino acid and the diamine chelate ring size on antitumor activity, and interactions with 5′-GMP and DNA. Journal of Inorganic Biochemistry, 2004, 98, 1933-1946.	3.5	39
77	Synthesis, characterization and antiproliferative studies of the enantiomers of cis-[(1,2-camphordiamine)dichloro]platinum(II) complexes. Bioorganic and Medicinal Chemistry, 2008, 16, 1721-1737.	3.0	39
78	Purification of Balansain I, an Endopeptidase from Unripe Fruits ofBromelia balansaeMez (Bromeliaceae). Journal of Agricultural and Food Chemistry, 2000, 48, 3795-3800.	5.2	38
79	On the sensitivity of MD trajectories to changes in water-protein interaction parameters: The potato carboxypeptidase inhibitor in water as a test case for the GROMOS force field. , 1996, 25, 89-103.		37
80	Structure of Activated Thrombin-Activatable Fibrinolysis Inhibitor, a Molecular Link between Coagulation and Fibrinolysis. Molecular Cell, 2008, 31, 598-606.	9.7	37
81	Analysis of Phenetic Trees Based on Metabolic Capabilites Across the Three Domains of Life. Journal of Molecular Biology, 2004, 340, 491-512.	4.2	35
82	Studies of the Antiproliferative Activity of Ruthenium (II) Cyclopentadienyl-Derived Complexes with Nitrogen Coordinated Ligands. Bioinorganic Chemistry and Applications, 2010, 2010, 1-11.	4.1	35
83	Protein similarities beyond disulphide bridge topology. Journal of Molecular Biology, 1998, 284, 541-548.	4.2	34
84	Response of the digestive system of Helicoverpa zea to ingestion of potato carboxypeptidase inhibitor and characterization of an uninhibited carboxypeptidase B. Insect Biochemistry and Molecular Biology, 2006, 36, 654-664.	2.7	34
85	Detection of non-covalent protein interactions by 'intensity fading' MALDI-TOF mass spectrometry: applications to proteases and protease inhibitors. Nature Protocols, 2007, 2, 119-130.	12.0	34
86	Purification and Biochemical Characterization of Asclepain c I from the Latex of Asclepias curassavica L Protein Journal, 2004, 23, 403-411.	1.6	32
87	The Central Tryptic Fragment of Histones H1 and H5 Is a Fully Compacted Domain and Is the Only Folded Region in the Polypeptide Chain. A Thermodynamic Study. FEBS Journal, 1982, 122, 327-331.	0.2	31
88	The Sequence and Conformation of Human Pancreatic Procarboxypeptidase A2. Journal of Biological Chemistry, 1995, 270, 6651-6657.	3.4	31
89	The Crystal Structure of Thrombin-activable Fibrinolysis Inhibitor (TAFI) Provides the Structural Basis for Its Intrinsic Activity and the Short Half-life of TAFIa. Journal of Biological Chemistry, 2008, 283, 29416-29423.	3.4	31
90	Functional segregation and emerging role of ciliaâ€related cytosolic carboxypeptidases (CCPs). FASEB Journal, 2013, 27, 424-431.	0.5	31

#	Article	IF	CITATIONS
91	Identification of Protein Ligands in Complex Biological Samples Using Intensity-Fading MALDI-TOF Mass Spectrometry. Analytical Chemistry, 2003, 75, 3385-3395.	6.5	30
92	Funastrain c II: A Cysteine Endopeptidase Purified from the Latex of Funastrum clausum. Protein Journal, 2004, 23, 205-215.	1.6	30
93	Mechanism of action of potato carboxypeptidase inhibitor (PCI) as an EGF blocker. Cancer Letters, 2005, 226, 169-184.	7.2	30
94	The Unfolding Pathway and Conformational Stability of Potato Carboxypeptidase Inhibitor. Journal of Biological Chemistry, 2000, 275, 14205-14211.	3.4	29
95	Functional Screening of Serine Protease Inhibitors in the Medical Leech Hirudo medicinalis Monitored by Intensity Fading MALDI-TOF MS. Molecular and Cellular Proteomics, 2005, 4, 1602-1613.	3.8	29
96	Crystal structure of an oligomer of proteolytic zymogens: detailed conformational analysis of the bovine ternary complex and implications for their activation 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1997, 269, 861-880.	4.2	28
97	Detection of Noncovalent Complexes in Biological Samples by Intensity Fading and High-Mass Detection MALDI-TOF Mass Spectrometry. Journal of Proteome Research, 2006, 5, 2711-2719.	3.7	28
98	Influence of Aggregation Propensity and Stability on Amyloid Fibril Formation As Studied by Fourier Transform Infrared Spectroscopy and Two-Dimensional COS Analysis. Biochemistry, 2009, 48, 10582-10590.	2.5	28
99	New ruthenium(II) mixed metallocene derived complexes: Synthesis, characterization by X-ray diffraction and evaluation on DNA interaction by atomic force microscopy. Inorganica Chimica Acta, 2010, 363, 3765-3775.	2.4	28
100	The activation pathway of procarboxypeptidase B from porcine pancreas: Participation of the active enzyme in the proteolytic processing. Protein Science, 1995, 4, 1792-1800.	7.6	27
101	Procarboxypeptidase A from the insect pestHelicoverpa armigeraand its derived enzyme. FEBS Journal, 2003, 270, 3026-3035.	0.2	27
102	Proteomic profiling of a snake venom using high mass detection MALDI-TOF mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 600-606.	2.8	27
103	Monitoring the interference of proteinâ€protein interactions <i>in vivo</i> by bimolecular fluorescence complementation: the DnaK case. Proteomics, 2008, 8, 3433-3442.	2.2	27
104	Prediction of enzyme function by combining sequence similarity and protein interactions. BMC Bioinformatics, 2008, 9, 249.	2.6	27
105	Urea-gradient gel electrophoresis studies on the association of procarboxypeptidases A and B, proproteinase E, and their tryptic activation products. FEBS Letters, 1985, 191, 273-277.	2.8	26
106	Primary structure of the activation segment of procarboxypeptidase a from porcine pancreas. Biochemical and Biophysical Research Communications, 1986, 141, 517-523.	2.1	26
107	Major Kinetic Traps for the Oxidative Folding of Leech Carboxypeptidase Inhibitorâ€. Biochemistry, 2003, 42, 6754-6761.	2.5	26
108	Role of Kinetic Intermediates in the Folding of Leech Carboxypeptidase Inhibitor. Journal of Biological Chemistry, 2004, 279, 37261-37270.	3.4	26

#	Article	IF	CITATIONS
109	Detecting remotely related proteins by their interactions and sequence similarity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7151-7156.	7.1	26
110	Linking amyloid protein aggregation and yeast survival. Molecular BioSystems, 2011, 7, 1121.	2.9	26
111	Refolding of potato carboxypeptidase inhibitor by molecular dynamics simulations with disulfide bond constraints a aEdited by A. R. Fersht. Journal of Molecular Biology, 1998, 284, 145-172.	4.2	25
112	Hydrogen exchange monitored by MALDI-TOF mass spectrometry for rapid characterization of the stability and conformation of proteins. FEBS Letters, 2000, 472, 27-33.	2.8	25
113	Isolation and Characterization of Hieronymain II, Another Peptidase Isolated from Fruits of BromeliaÂhieronymi Mez (Bromeliaceae). Protein Journal, 2006, 25, 224-231.	1.6	25
114	C-terminomics Screen for Natural Substrates of Cytosolic Carboxypeptidase 1 Reveals Processing of Acidic Protein C termini. Molecular and Cellular Proteomics, 2015, 14, 177-190.	3.8	25
115	Crystal Structure of Novel Metallocarboxypeptidase Inhibitor from Marine Mollusk Nerita versicolor in Complex with Human Carboxypeptidase A4. Journal of Biological Chemistry, 2012, 287, 9250-9258.	3.4	24
116	Stability and fluctuations of the potato carboxypeptidase a protein inhibitor fold: A molecular dynamics study. Biochemical and Biophysical Research Communications, 1991, 176, 616-621.	2.1	23
117	Classification of common functional loops of kinase super-families. Proteins: Structure, Function and Bioinformatics, 2004, 56, 539-555.	2.6	23
118	Tri-domain Bifunctional Inhibitor of Metallocarboxypeptidases A and Serine Proteases Isolated from Marine Annelid Sabellastarte magnifica. Journal of Biological Chemistry, 2012, 287, 15427-15438.	3.4	23
119	Procarboxypeptidase in rat pancreas Overall characterization and comparison of the activation processes. FEBS Journal, 1994, 222, 55-64.	0.2	22
120	The molecular analysis of <i>Trypanosoma cruzi</i> metallocarboxypeptidase 1 provides insight into fold and substrate specificity. Molecular Microbiology, 2008, 70, 853-866.	2.5	22
121	Prediction of the conformation and geometry of loops in globular proteins: Testing ArchDB, a structural classification of loops. Proteins: Structure, Function and Bioinformatics, 2005, 60, 746-757.	2.6	21
122	Synthesis, DNA interaction and cytotoxicity studies of cis-{[1, 2-bis(aminomethyl)cyclohexane]dihalo}platinum(II) complexes. Journal of Inorganic Biochemistry, 2008, 102, 973-987.	3.5	21
123	Scrambled Isomers as Key Intermediates in the Oxidative Folding of Ligand Binding Module 5 of the Low Density Lipoprotein Receptor. Journal of Biological Chemistry, 2008, 283, 13627-13637.	3.4	21
124	Synthesis, biological evaluation and SAR studies of novel bicyclic antitumor platinum(IV) complexes. European Journal of Medicinal Chemistry, 2014, 83, 374-388.	5.5	21
125	Comparison of the NMR solution structure with the X-ray crystal structure of the activation domain from procarboxypeptidase B. Journal of Biomolecular NMR, 1992, 2, 1-10.	2.8	20
126	Conformational flexibility in a highly mobile protein loop of foot-and-mouth disease virus: distinct structural requirements for integrin and antibody binding 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 283, 331-338.	4.2	20

#	Article	IF	CITATIONS
127	Structural similarity to link sequence space: New potential superfamilies and implications for structural genomics. Protein Science, 2002, 11, 1101-1116.	7.6	20
128	Proteome of the BacteriumMycoplasmapenetrans. Journal of Proteome Research, 2006, 5, 688-694.	3.7	20
129	Caught after the Act:Â A Human A-Type Metallocarboxypeptidase in a Product Complex with a Cleaved Hexapeptideâ€. Biochemistry, 2007, 46, 6921-6930.	2.5	20
130	Exploring the "intensity fading―phenomenon in the study of noncovalent interactions by MALDI-TOF mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 359-367.	2.8	20
131	Oxidative Folding and Structural Analyses of a Kunitz-Related Inhibitor and Its Disulfide Intermediates: Functional Implications. Journal of Molecular Biology, 2011, 414, 427-441.	4.2	20
132	The activation segment of procarboxypeptidase A from porcine pancreas constitutes a folded structural domain. FEBS Letters, 1982, 149, 257-260.	2.8	19
133	Autolysis of proproteinase E in bovine procarboxypeptidase A ternary complex gives rise to subunit III. FEBS Letters, 1990, 277, 37-41.	2.8	19
134	Characterisation and preliminary X-ray diffraction analysis of human pancreatic procarboxypeptidase A2. FEBS Letters, 1997, 420, 7-10.	2.8	19
135	Mutations in the N- and C-terminal Tails of Potato Carboxypeptidase Inhibitor Influence Its Oxidative Refolding Process at the Reshuffling Stage. Journal of Biological Chemistry, 2001, 276, 11683-11690.	3.4	19
136	The Unfolding Pathway of Leech Carboxypeptidase Inhibitor. Journal of Biological Chemistry, 2002, 277, 17538-17543.	3.4	19
137	Structure and dynamics of the potato carboxypeptidase inhibitor by 1H and 15N NMR. Proteins: Structure, Function and Bioinformatics, 2003, 50, 410-422.	2.6	19
138	Synthesis, Characterization and Biological Activity of trans-Platinum(II) and trans-Platinum(IV) Complexes with 4-Hydroxymethylpyridine. ChemBioChem, 2005, 6, 2068-2077.	2.6	19
139	Detailed molecular comparison between the inhibition mode of A/B-type carboxypeptidases in the zymogen state and by the endogenous inhibitor latexin. Cellular and Molecular Life Sciences, 2005, 62, 1996-2014.	5.4	19
140	The NMR Structure and Dynamics of the Two-Domain Tick Carboxypeptidase Inhibitor Reveal Flexibility in Its Free Form and Stiffness upon Binding to Human Carboxypeptidase B. Biochemistry, 2008, 47, 7066-7078.	2.5	19
141	Purification and Characterization of a Cysteine Endopeptidase from <i>Vasconcellea quercifolia</i> A. StHil. Latex Displaying High Substrate Specificity. Journal of Agricultural and Food Chemistry, 2010, 58, 11027-11035.	5.2	19
142	On the water-promoted mechanism of peptide cleavage by carboxypeptidase A. A theoretical study. Canadian Journal of Chemistry, 1994, 72, 2077-2083.	1.1	18
143	Contribution of C-tail residues of potato carboxypeptidase inhibitor to the binding to carboxypeptidase $\hat{a} \in fA$. FEBS Journal, 2000, 267, 1502-1509.	0.2	18
144	Secondary Binding Site of the Potato Carboxypeptidase Inhibitor. Contribution to Its Structure, Folding, and Biological Properties. Biochemistry, 2004, 43, 7973-7982.	2.5	18

#	Article	IF	CITATIONS
145	NMR Structural Characterization and Computational Predictions of the Major Intermediate in Oxidative Folding of Leech Carboxypeptidase Inhibitor. Structure, 2005, 13, 1193-1202.	3.3	18
146	Sequencing and characterization of asclepain f: the first cysteine peptidase cDNA cloned and expressed from Asclepias fruticosa latex. Planta, 2009, 230, 319-328.	3.2	18
147	Characterization of papain-like isoenzymes from latex of Asclepias curassavica by molecular biology validated by proteomic approach. Biochimie, 2009, 91, 1457-1464.	2.6	18
148	Amyloid Formation by Human Carboxypeptidase D Transthyretin-like Domain under Physiological Conditions. Journal of Biological Chemistry, 2014, 289, 33783-33796.	3.4	18
149	Isolation and re-association of the subunits from the pro-(carboxypeptidase A)–pro-(proteinase E) binary complex from pig pancreas. Biochemical Journal, 1982, 205, 449-452.	3.7	17
150	Study of a Major Intermediate in the Oxidative Folding of Leech Carboxypeptidase Inhibitor: Contribution of the Fourth Disulfide Bond. Journal of Molecular Biology, 2005, 352, 961-975.	4.2	17
151	Characterizing the Tick Carboxypeptidase Inhibitor. Journal of Biological Chemistry, 2006, 281, 22906-22916.	3.4	17
152	Inhibitors of aldehyde dehydrogenases of the 1A subfamily as putative anticancer agents: Kinetic characterization and effect on human cancer cells. Chemico-Biological Interactions, 2019, 306, 123-130.	4.0	17
153	Classification of protein disulphide-bridge topologies. Journal of Computer-Aided Molecular Design, 2001, 15, 477-487.	2.9	16
154	Protein secondary structure and stability determined by combining exoproteolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Mass Spectrometry, 2002, 37, 974-984.	1.6	16
155	Designing Out Disulfide Bonds of Leech Carboxypeptidase Inhibitor: Implications for Its Folding, Stability and Function. Journal of Molecular Biology, 2009, 392, 529-546.	4.2	16
156	Metallocarboxypeptidases and their Inhibitors: Recent Developments in Biomedically Relevant Protein and Organic Ligands. Current Medicinal Chemistry, 2013, 20, 1595-1608.	2.4	16
157	Sequential homologies between procarboxypeptidases A and B from porcine pancreas. Biochemical and Biophysical Research Communications, 1985, 130, 97-103.	2.1	15
158	Deciphering the Structural Basis That Guides the Oxidative Folding of Leech-derived Tryptase Inhibitor. Journal of Biological Chemistry, 2009, 284, 35612-35620.	3.4	15
159	The novel structure of a cytosolic M14 metallocarboxypeptidase (CCP) from <i>Pseudomonas aeruginosa</i> : a model for mammalian CCPs. FASEB Journal, 2012, 26, 3754-3764.	0.5	15
160	Crystal structure and mechanism of human carboxypeptidase O: Insights into its specific activity for acidic residues. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3932-E3939.	7.1	15
161	TrSDB: a proteome database of transcription factors. Nucleic Acids Research, 2004, 32, 171D-173.	14.5	14
162	Direct interaction between a human digestive protease and the mucoadhesive poly(acrylic acid). Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 784-791.	2.5	14

#	Article	IF	CITATIONS
163	A novel metallocarboxypeptidaseâ€like enzyme from the marine annelid <i>Sabellastarte magnifica</i> – a step into the invertebrate world of proteases. FEBS Journal, 2009, 276, 4875-4890.	4.7	14
164	Insights into the molecular inactivation mechanism of human activated thrombin-activatable fibrinolysis inhibitor. Journal of Thrombosis and Haemostasis, 2010, 8, 1056-1065.	3.8	14
165	Specific interaction of histone H1 with eukaryotic DNA. Nucleic Acids Research, 1981, 9, 1383-1394.	14.5	13
166	Overproduction of a recombinant carboxypeptidase inhibitor by optimization of fermentation conditions. Applied Microbiology and Biotechnology, 1994, 41, 632-637.	3.6	13
167	Comparative Analysis of the Sequences and Three-Dimensional Models of Human Procarboxypeptidases A1, A2 and B. Biological Chemistry, 1998, 379, 149-156.	2.5	13
168	Thermodynamic analysis of helix-engineered forms of the activation domain of human procarboxypeptidase A2. FEBS Journal, 2000, 267, 5891-5899.	0.2	13
169	Monitoring the expression and purification of recombinant proteins by MALDI-TOF mass spectrometry. Enzyme and Microbial Technology, 2001, 29, 99-103.	3.2	13
170	Characterization of the proteolytic system present in Vasconcellea quercifolia latex. Planta, 2012, 236, 1471-1484.	3.2	13
171	Pancreatic Procarboxypeptidases: Their Activation Processes Related to the Structural Features of the Zymogens and Activation Segments. Biological Chemistry Hoppe-Seyler, 1992, 373, 387-392.	1.4	12
172	The identification of nuclear proteins that bind the homopyrimidine strand of d(GATC)n DNA sequences, but not the homopurine strand. Nucleic Acids Research, 1999, 27, 3267-3275.	14.5	12
173	Metallocarboxypeptidases: Emerging Drug Targets in Biomedicine. Current Pharmaceutical Design, 2007, 13, 347-364.	1.9	12
174	Detection and characterisation of a new metallocarboxypeptidase inhibitor from Solanum tuberosum cv. Desirèe using proteomic techniques. Food Chemistry, 2012, 133, 1163-1168.	8.2	12
175	Oxidative Folding of Leech-Derived Tryptase Inhibitor Via Native Disulfide-Bonded Intermediates. Antioxidants and Redox Signaling, 2008, 10, 77-86.	5.4	11
176	Analysis of a new crystal form of procarboxypeptidase B: Further insights into the catalytic mechanism. Biopolymers, 2010, 93, 178-185.	2.4	11
177	Structure–Function Analysis of the Short Splicing Variant Carboxypeptidase Encoded by Drosophila melanogaster silver. Journal of Molecular Biology, 2010, 401, 465-477.	4.2	11
178	Structural and Functional Analysis of the Complex between Citrate and the Zinc Peptidase Carboxypeptidase A. Enzyme Research, 2011, 2011, 1-8.	1.8	11
179	A Noncanonical Mechanism of Carboxypeptidase Inhibition Revealed by the Crystal Structure of the Tri-Kunitz SmCl in Complex with Human CPA4. Structure, 2013, 21, 1118-1126.	3.3	11
180	A generalized Langevin dynamics approach to model solvent dynamics effects on proteins via a solvent-accessible surface. The carboxypeptidase A inhibitor protein as a model. Theoretical Chemistry Accounts, 2000, 105, 101-109.	1.4	10

#	Article	IF	CITATIONS
181	Analysis of the effect of potato carboxypeptidase inhibitor pro-sequence on the folding of the mature protein. FEBS Journal, 2003, 270, 3641-3650.	0.2	10
182	Ligand Screening by Exoproteolysis and Mass Spectrometry in Combination With Computer Modelling. Journal of Molecular Biology, 2003, 330, 1039-1048.	4.2	10
183	Structural and functional characterization of binding sites in metallocarboxypeptidases based on Optimal Docking Area analysis. Proteins: Structure, Function and Bioinformatics, 2007, 68, 131-144.	2.6	10
184	The Xâ€Ray Structure of Carboxypeptidase A Inhibited by a Thiirane Mechanismâ€Based Inhibitor. Chemical Biology and Drug Design, 2010, 75, 29-34.	3.2	10
185	On the interaction of histone H1 and H1 peptides with DNA. Biochimie, 1978, 60, 445-451.	2.6	9
186	Generation of a subunit III-like protein by autolysis of human and porcine proproteinase E in a binary complex with procarboxypeptidase A. Biochemical and Biophysical Research Communications, 1989, 163, 1191-1196.	2.1	9
187	TranScout: prediction of gene expression regulatory proteins from their sequences. Bioinformatics, 2002, 18, 597-607.	4.1	9
188	NMR solution structure of the activation domain of human procarboxypeptidase A2. Protein Science, 2003, 12, 296-305.	7.6	9
189	Intensity-fading MALDI-TOF-MS: novel screening for ligand binding and drug discovery. Drug Discovery Today: TARGETS, 2004, 3, 23-30.	0.5	9
190	The NMR Structures of the Major Intermediates of the Two-domain Tick Carboxypeptidase Inhibitor Reveal Symmetry in Its Folding and Unfolding Pathways. Journal of Biological Chemistry, 2008, 283, 27110-27120.	3.4	9
191	Analysis of the mast cell expressed carboxypeptidase A3 and its structural and evolutionary relationship to other vertebrate carboxypeptidases. Developmental and Comparative Immunology, 2022, 127, 104273.	2.3	9
192	Refinement of modelled structures by knowledge-based energy profiles and secondary structure prediction: application to the human procarboxypeptidase A2. Journal of Computer-Aided Molecular Design, 2000, 14, 83-92.	2.9	8
193	Monitoring disappearance of monomers and generation of resistance to proteolysis during the formation of the activation domain of human procarboxypeptidase A2 (ADA2h) amyloid fibrils by matrix-assisted laser-desorption ionization–time-of-flight-MS. Biochemical Journal, 2003, 374, 489-495.	3.7	8
194	Thioxophosphoranyl aryl- and heteroaryloxiranes as the representants of a new class of metallocarboxypeptidase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 4823-4828.	3.0	8
195	Detecting and Interfering Protein Interactions: Towards the Control of Biochemical Pathways. Current Medicinal Chemistry, 2009, 16, 362-379.	2.4	8
196	Flexibility of the Thrombin-activatable Fibrinolysis Inhibitor Pro-domain Enables Productive Binding of Protein Substrates. Journal of Biological Chemistry, 2010, 285, 38243-38250.	3.4	8
197	Intensity fading MALDI-TOF mass spectrometry and functional proteomics assignments to identify protease inhibitors in marine invertebrates. Journal of Proteomics, 2017, 165, 75-92.	2.4	8
198	Discovery of Mechanism-Based Inactivators for Human Pancreatic Carboxypeptidase A from a Focused Synthetic Library. ACS Medicinal Chemistry Letters, 2017, 8, 1122-1127.	2.8	8

#	Article	IF	CITATIONS
199	Biochemical characterization of the YBPCI miniprotein, the first carboxypeptidase inhibitor isolated from Yellow Bell Pepper (Capsicum annuum L). A novel contribution to the knowledge of miniproteins stability. Protein Expression and Purification, 2018, 144, 55-61.	1.3	8
200	Synthesis and Structural/Functional Characterization of Selective M14 Metallocarboxypeptidase Inhibitors Based on Phosphinic Pseudopeptide Scaffold: Implications on the Design of Specific Optical Probes. Journal of Medicinal Chemistry, 2019, 62, 1917-1931.	6.4	8
201	Carboxypeptidases. , 1999, , 13-34.		8
202	Cloning, sequencing and functional expression of a cDNA encoding porcine pancreatic preprocarboxypeptidase A1. FEBS Journal, 1999, 259, 719-726.	0.2	8
203	The separation of pancreatic procarboxypeptidases by high-performance liquid chromatography and chromatofocusing. Journal of Chromatography A, 1989, 481, 233-243.	3.7	7
204	A molecular dynamics study of a model built Pro-36-Gly mutant derived from the potato carboxypeptidase a inhibitor protein. Biochemical and Biophysical Research Communications, 1991, 176, 627-632.	2.1	7
205	Structure and atomic fluctuation patterns of potato carboxypeptidase a inhibitor protein. European Biophysics Journal, 1995, 24, 1-11.	2.2	7
206	Cutting at the right place. The importance of selective limited proteolysis in the activation of proproteinase E. FEBS Journal, 1998, 251, 839-844.	0.2	7
207	Structures of scrambled disulfide forms of the potato carboxypeptidase inhibitor predicted by molecular dynamics simulations with constraints. Proteins: Structure, Function and Bioinformatics, 2000, 40, 482-493.	2.6	7
208	A new type of five-membered heterocyclic inhibitors of basic metallocarboxypeptidases. European Journal of Medicinal Chemistry, 2009, 44, 3266-3271.	5.5	7
209	Biochemical characterization of a novel carboxypeptidase inhibitor from a variety of Andean potatoes. Phytochemistry, 2015, 120, 36-45.	2.9	7
210	A Bowman–Birk protease inhibitor purified, cloned, sequenced and characterized from the seeds of Maclura pomifera (Raf.) Schneid. Planta, 2017, 245, 343-353.	3.2	7
211	Identification of Tight-Binding Plasmepsin II and Falcipain 2 Inhibitors in Aqueous Extracts of Marine Invertebrates by the Combination of Enzymatic and Interaction-Based Assays. Marine Drugs, 2017, 15, 123.	4.6	7
212	Biochemical and MALDI-TOF Mass Spectrometric Characterization of a Novel Native and Recombinant Cystine Knot Miniprotein from Solanum tuberosum subsp. andigenum cv. Churqueña. International Journal of Molecular Sciences, 2018, 19, 678.	4.1	7
213	Detection of Molecular Interactions by Using a New Peptide-Displaying Bacteriophage Biosensor. Biochemical and Biophysical Research Communications, 1999, 262, 801-805.	2.1	6
214	Self-assembly of human latexin into amyloid-like oligomers. BMC Structural Biology, 2007, 7, 75.	2.3	6
215	Carboxypeptidase inhibition by NvCl suppresses airway hyperreactivity in a mouse asthma model. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2234-2237.	5.7	6
216	Substrate specificity of human metallocarboxypeptidase D: Comparison of the two active carboxypeptidase domains. PLoS ONE, 2017, 12, e0187778.	2.5	6

#	Article	IF	CITATIONS
217	Regeneration of reversed-phase high-performance liquid chromatographic columns by flow reversal. Journal of Chromatography A, 1986, 356, 420-422.	3.7	5
218	Expression, purification and characterization of porcine pancreatic Carboxypeptidase B from Pichia pastoris for the conversion of recombinant human insulin. Enzyme and Microbial Technology, 2007, 40, 476-480.	3.2	5
219	Insights into the Two-Domain Architecture of the Metallocarboxypeptidase Inhibitor from the <i>Ascaris</i> Parasite Inferred from the Mechanism of Its Oxidative Folding. Biochemistry, 2009, 48, 8225-8232.	2.5	5
220	Plasticity in the Oxidative Folding Pathway of the High Affinity Nerita Versicolor Carboxypeptidase Inhibitor (NvCl). Scientific Reports, 2017, 7, 5457.	3.3	5
221	Statistical Analysis of the Loop-Geometry on a Non-Redundant Database of Proteins. Journal of Molecular Modeling, 1998, 4, 347-354.	1.8	4
222	Human betacellulin structure modeled from other members of EGF family. Journal of Molecular Modeling, 2002, 8, 131-144.	1.8	4
223	Aromatic Organic Compounds as Scaffolds for Metallocarboxypeptidase Inhibitor Design. Chemical Biology and Drug Design, 2009, 73, 75-82.	3.2	4
224	Cytotoxicity studies of [PtCl2(H2bim)] (H2bim=2,2′-biimidazole): Study of its interaction with a small protein PCl (potato carboxypeptidase inhibitor). Inorganica Chimica Acta, 2009, 362, 946-952.	2.4	4
225	Cloning, Sequencing, and Identification Using Proteomic Tools of a Protease from Bromelia hieronymi Mez. Applied Biochemistry and Biotechnology, 2011, 165, 583-593.	2.9	4
226	Carboxypeptidase B. , 2013, , 1324-1329.		4
227	Identification of Carboxypeptidase Substrates by C-Terminal COFRADIC. Methods in Molecular Biology, 2017, 1574, 115-133.	0.9	4
228	Characterization, Recombinant Production and Structure-Function Analysis of NvCl, A Picomolar Metallocarboxypeptidase Inhibitor from the Marine Snail Nerita versicolor. Marine Drugs, 2019, 17, 511.	4.6	4
229	Improvements in the application of the 4,4-N,N-Dimethylaminoazobenzene- $4\hat{a}\in^2$ -isothiocyanate micromethod to the sequence analysis of proteins. Analytical Biochemistry, 1989, 180, 374-379.	2.4	3
230	Kinetic analyis of the carboxypeptidase a hydrolysis of oligopeptides by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1989, 479, 27-37.	3.7	3
231	Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to the structure determination of medium and large macrocycles formed by palladium(0)-catalyzed allylation of arenesulfonamides, sulfamide, and cyanamide. , 1999, 13, 2359-2365.		3
232	Study by HPLC-MS of the interaction of platinum antitumor complexes with potato carboxypeptidase inhibitor (PCI). Bioorganic and Medicinal Chemistry, 2008, 16, 6832-6840.	3.0	3
233	Substrate Specificity and Structural Modeling of Human Carboxypeptidase Z: A Unique Protease with a Frizzled-Like Domain. International Journal of Molecular Sciences, 2020, 21, 8687.	4.1	3
234	A scanning microcalorimetric study of procarboxypeptidase A and its tryptic pieces carboxypeptidase A and activation segment. Biochemical Society Transactions, 1985, 13, 343-344.	3.4	2

#	Article	IF	CITATIONS
235	Enzymatic and chemical fragmentation of proteins: A simple laboratory visualization of differences in yield, specificity and applicability. Biochemical Education, 1988, 16, 174-176.	0.1	2
236	Determination of hemihedral twinning and initial structural analysis of crystals of the procarboxypeptidase A ternary complex. Acta Crystallographica Section D: Biological Crystallography, 1995, 51, 819-823.	2.5	2
237	Including Functional Annotations and Extending the Collection of Structural Classifications of Protein Loops (ArchDB). Bioinformatics and Biology Insights, 2007, 1, 117793220700100.	2.0	2
238	Biochemical characterization, cDNA cloning, and molecular modeling of araujiain all, a papain-like cysteine protease from Araujia angustifolia latex. Planta, 2011, 234, 293-304.	3.2	2
239	Computerized sequence-based predictive methods: their use in the conformational characterization of proteins and in the analysis of their homologies a practical case employing lysozyme and α-lactalbumin. Biochemical Education, 1989, 17, 36-41.	0.1	1
240	Crystallization and preliminary X-ray analysis of the ternary complex of procarboxypeptidase A from bovine pancreas. FEBS Letters, 1995, 367, 211-213.	2.8	1
241	SNOW: Standard NOmenclature Wizard to help searching for (bio) chemical standardized names. Bioinformatics, 2003, 19, 2492-2493.	4.1	1
242	Recombinant expression of disulfide-rich proteins: carboxypeptidase inhibitors as model proteins. Microbial Cell Factories, 2006, 5, P47.	4.0	1
243	Prediction of a new class of RNA recognition motif. Journal of Molecular Modeling, 2011, 17, 1863-1875.	1.8	1
244	Carboxypeptidase B. , 2004, , 831-833.		1
245	Including Functional Annotations and Extending the Collection of Structural Classifications of Protein Loops (ArchDB). Bioinformatics and Biology Insights, 2009, 1, 77-90.	2.0	1
246	Nuclear magnetic resonance studies on the isolated activation segment from porcine pancreatic procarboxypeptidase A. Biochemical Society Transactions, 1985, 13, 344-345.	3.4	0
247	MAPI: A Server for Improving Protein Identification from a Four Matrices Mass Spectrometry Approach. Current Proteomics, 2010, 7, 102-107.	0.3	0
248	Insect Gut Carboxypeptidase 3. , 2013, , 1370-1375.		0
249	Analysis of Protein—Protein Interactions in Complex Biological Samples by MALDI TOF MS. Feasibility and Use of the Intensity-Fading (IF-) Approach. Principles and Practice, 2004, , 183-202.	0.3	Ο

Advances in metallo-procarboxypeptidases. , 1994, , 19-27.